AFRL-RI-RS-TR-2011-226

A DISTRIBUTED MIDDLEWARE-BASED ARCHITECTURE FOR
FAULT-TOLERANT COMPUTING OVER DISTRIBUTED
REPOSITORIES

UNIVERSITY oF TEXAS AT ARLINGTON
SEPTEMBER 2011

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND BUNITED STATES AIR FORCE B ROME, NY 13441

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is available to the
general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-226 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

Is/ Is/
ROBERT M. FLO JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE O 0168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
SEP 2011 Final Technical Report JUL 2009 - JAN 2011
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

FA8750-09-2-0199
A DISTRIBUTED MIDDLEWARE-BASED ARCHITECTURE

FOR FAULT-TOLERANT COMPUTING OVER °b- GRANT NUMBER

DISTRIBUTED REPOSITORIES

5c. PROGRAM ELEMENT NUMBER

65502F
6. AUTHOR(S) 5d. PROJECT NUMBER
558]
Sharma Chakravarthy
5e. TASK NUMBER
09
5f. WORK UNIT NUMBER
02
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Texas at Arlington REPORT NUMBER
300 Nedderman Hall
416 Y ates Street N/A
Arlington, TX 76019
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
N/A
Air Force Research Laboratory/RISD
525 Brooks Road 11. SPONSORING/MONITORING
Rome NY 13441-4505 AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-226

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed exempt from
public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy

clarification memorandum dated 16 Jan 09.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project has established the foundations for developing a‘ Distributed Middleware-based Architecture for Fault-
tolerant Computing Over Distributed Repositories’. During this project, the sub problems and related issues were
identified and the creation of an integrated solution was investigated. In this project, the contractor implemented proof-
principle systems to show the effectiveness of the proposed approaches. The simulator has been extended to incorporate
features specific to this scenario and analysis has been performed. This effort is by no means complete. Furthermore,
not all the problems in the proposed architecture have been addressed. There are a number of important problems that
need to be addressed to obtain a complete solution. In each section of the final report, the contractor has articulated the
need for extending proposed solutions to reach a practically useful approach/solution.

15. SUBJECT TERMS
Fault-tolerant, distributed information management, managed information objects, scalable fault tolerance, data
repositories

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES ROBERT M. FLO
a. REPORT b. ABSTRACT [c. THIS PAGE SAR 93 19b. TELEPHONE NUMBER (Include area code)
u u u (315) 330-2334

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 739.18

Table of Contents

1. INTRODUCGTION ...t babsssbssnsnres 1
2. IMETHODS .. a s nebs s rnenrneneneneee 3
3. ASSUMPTIONS AND PROCEDURES......c e eeeeneneneee 4
4. USE CASE SCENARIOS ... e 6
5. METADATA MANAGEMENT ... 11
5.1 Data stored at @aCh NOTe......ccocuuiiiiie e e e 11
5.2 Network Managed Data.....ccccccciiiieieeeccciree e e e e e e e e rre e e e s e s e saareaeeeas 11
6. QUERY PLAN GENERATION, HEURISTICS, AND EXECUTION...ccceiiiimiiiiieeeeeeiiiieeee e 14
6.1 QUETY Plan FOIMAT ..ottt et e et e e e et e e e e b e e e e e bteeeeenreeeeennees 14
6.2 Statistics used for plan geNEratioN........cceeiciiiei e 16
6.3 Query Plan generation DESIZNcccuuviiiieii it e e essrrrre e e e e et e e e e e s e nanees 17
6.4 Plan Generation AlGOrithmcoi i e e 21
6.5 Examples of Generated PIans........coccviiiiiiiii ittt 22
6.6 Heuristics-Based plan ENerationcoccuveiiiiieie ettt e 25
6.7 EXPerimental RESUILS.....ciiicuiiee ittt et e e e sabre e e e 26
7. REPLICATION AND NETWORK MANAGEMENTc.otiiiiriienieenieenee et 31
7.1 Message exchange for adjacency list maintenance at each node.........ccccceeeevveeennnee. 37
7.2 (20T o] [Tor=) 4 o) o TSRS 39
7.3 Application Level mechanism for Acknowledging UDP packetscccccevvveercuveeennnen. 47
8. SIMULATION STUDIES ...ttt eeeeeseeeseseseseeeeeeseeeaeaeaeaeaeasasaeeeaeasaenens 50
8.1 SIMUIAtIoN ArChIitECIUNE c....eiieiieee e s 50
8.2 NETWORK CONFIGURATION & MESSAGE PROTOCOL.....cceviiiiiiiiieieeeeeeciiiieeee e 54
8.3 METADATA GENERATION. ... 58
8.4 REPLICATION ...ttt ettt ettt e e e e ettt e e e e e e e anbe et e e e e e saanereeeeeseeeaannreeeeeas 59
8.5 STATIC QUERY PLAN EXECUTIONiiiiiteeee ettt ettt e e siieeee e e e s s eneeeeeeeeees 59
8.6 SIMULATION RESULTS ...ttt ettt ettt e e e e st e e e e e e e mnneeeeee e e 69
9. SOFTWARE DEVELOPIMENT ...ttt ittt ettt ettt e e e s et e e e e s e s eee e e e e e emnnee 81
10. RESULTS AND DISCUSSIONS ... ettt et e e e s e e e e s s nnneeeeee e e e 82
11. CONCLUSIONS ...ttt ettt ettt ettt et sttt et e b et esbeesbeesheesaeesatesmteeaeeeneeennean 82
12. REFERENGCES ...ttt ettt ettt et e e e st et e e e s e st bt e e e e e s e smnneeeeeeesenanns 84
LIST OF ACRONYMS ...ttt ettt ettt ettt ettt e be e st she e st st st st e s bt e s en e ereennee e 86

LIST OF FIGURES

FIUIE 11 AFCIITECIUIE cooeiieie ettt e e e e st e e e et e e e s e aaeeeenbaeeeenasaeeeenstaeeennsens 2
FIgUre 2: SCENAIIO LOCATION ..uuuiiii e e e e e s e e e e e eeeeeeeeseeeeeeeneeeeeeeeees 6
Figure 3: Mission Execution Elements and Plan..........cccoeeoiiiiiiicciie e 8
Figure 4: Effect of Heuristics on different connectivities.........cccvecvveeiiciiie v 28
Figure 5 Effect of Heuristics on different qUEriesoccueeiiiiiei e 30
FIGUIre 6 : IMESSAZE FOIMAT....uuiiiiiiiiiiieiiiteee ettt ettt e s sttt e e e e s s s bt ae e e e e s seatnaeeeeessenanns 31
FIGUIE 7: DISCOVERoiiiiiiiiiittete ettt ettt et e s ettt e e e s e s btat e e e e s s s s sanbbateeaesssannssbaeaeessanannn 32
FIGUIrE 8: NEIGHBOR ...cciiiiiiiiiiteee ettt e e e e s st e e e e s s s s aabbaaeeeesssasbnbaeeeessnnnnnns 32
FISUIE 91 DIRECTION ...ttt ettt e ettt e e e e e ettt e e e e e s atae et e e e e e s anbeaeeaeeesansnreeeeeesenannns 32
Figure 10: NetWork SNAPSROt.......coeii i e e e e e e e rre e e e e e e e e arreeeeeeeeenas 33
T (UL I R B 1 = AV (=LY Y- 34
Figure 12: Message sent for the COPY 0perationccceeieecciiiiiee et 35
Figure 13: Message exchange between nodes from T=010 T=N UNItS.......cccccvvveeeiiiieeecciiieeeccnnnnn. 38
Figure 14 A sample graph of 14 nodes in the SyStemcccoveiieiieicciie e 44
Figure 15 Relative positions 0f UAVS: CaS@ L.....ccccciiiiieiiiieeecieeeeecireeeeetteeeestteeeestreeeseraeeesensaeeeenns 52
Figure 16 Relative positions Of UAVS: CaSE 2.....ciiccuiiiiieiiieeeeieee e eciteeeeettee e eeitee e e esareeeeeraeeesenraeeeenns 52
Figure 17 UAVs facing €ach Otheroocuvvii ittt ettt e e e enes 53
Figure 18 UAVs facing in opposite dir€CHIONScccuviiieciiieiiiiie ettt eevae e 54
Figure 19 Graph representing 4 NOUEScccvciiiiieciiee ettt e e e e sate e e s sta e e e seataeeeenes 56

LIST OF TABLES

Table 1 Joint MiSSioN TRreadc.coiiiiiiiiiieeee ettt 8
Table 2 Relation FOrMAt.....coui ittt sttt 11
Table 3 Original Data at €aCh NOUEuuiii i et e e s e baee e enes 12
Table 4 Relation INfOrmationooeoiiiiiii ettt sttt e e s 12
Table 5 Information about the location of replica of each node.......cccecvveviviiiiiiceiee, 12
Table 6 CONNECLIVILY IMIAP .uiiiiiiie ettt et e e st e e s s be e e e sntae e s sbteeesssbaeeesansaeeesanes 13
Table 7: PIan FOMMAT c...viiiiiieiiie ettt ettt st ettt sb e e sat e e st e st e sbe e e sabeesabeeenseeenee 14
Table 8: Plan FOrmMat EXamPle.. ... uiii ettt ettt e et e e s aae e e e sbee e s snnbae e e snneeas 14
Table 9 Costs incurred by various @appPro@Ches........eecccecciiiiiiie et e et e e e e s errre e e e e e e e eanes 28
Table 10 Costs incurred by various approaches for Top KPIansccccovveeveeeicccciiieeee e, 30
Table 10: Interpretation Of flags ... e e e rre e e e 31
Table 11: Cost function parameters maintained at each node Ng.......cccovveeveeeiiccciieeee e, 40
TablE 12: RSS VAIUES ..ottt sar e s b e sme e e sar e sneeeanee 40
Table 13 RSS Values from t1 0o t5 for NOde 2......c.coiiiiiiiiiiiiiieeeeeeee e 45
Table 14 Parameter values fOr NOGE 2couiiiiiiiiiiiiieie et 45
Table 15 Parameter values for NOAE 6c.oouieiiiiiiiiieeenee e 45
Table 16 RSS Values from t1 £0 t5 for NOAE B.....ccueerueiiiiiiiiiiiieeeeeeeeee et 46
Table 17 Parameter values for NOde 14coceoiiiiiiiienieiie et 46
Table 18 RSS values from t1 to t6 for Node NL4........coceeiiiiienienieiieree e 46
Table 19: Cost for nodes N2, N6 anNd NIcoooeoieiiieaeiababeaababarabereberabeesaseeeeeeeeees 46
Table 20 Specifications for SIMUIALIONcocciiii i e e 50
Table 21 Reduction factors for the tWo UAVS........ccuiiiiriiiiiiieeceeeeeeeeee e 53
Table 22 ROULING taDI@veiiiieee s e ee e e rabe e e e s bae e e e eareeas 57
Table23: METADATA TABLE ...ttt sttt et e sn e snee 58
LI o] (S B @ LT oY Ao -1 o RSP 60

Summary

This project has established the foundations for developing a ‘Distributed Middleware-
based Architecture for Fault-tolerant Computing Over Distributed Repositories’. During
the project, we have identified the sub problems and related issues, and investigated
creation of an integrated solution. This effort is by no means complete. In each section,
we have articulated the need for extending proposed solutions to reach a practically
useful approach/solution.

Furthermore, we have not addressed all the problems identified in the proposed
architecture. There are a number of important problems that need to be addressed to
obtain a complete solution. We will be happy to explore opportunities with AFRL or
other agencies to continue this work.

In this project, we have implemented proof-principle systems to show the effectiveness
of the proposed approaches. The simulator has been extended to incorporate features
specific to this scenario and analysis has been performed. The next logical step is to
create a prototype by bringing all the components together and then move towards a
testbed. The team has been chosen from the outset keeping the long term goals in
mind and team is well-positioned for additional work on this project.

1. INTRODUCTION

The overall architecture includes a middleware in each node that has a number of
services (based on SOA) for Collecting, Managing, Replicating data and Meta data for
the purposes of routing and query processing. Briefly, the following services are
described in this report:

e Use case scenarios

e Meta data maintained at each node

e Query plan generation algorithms, heuristics, and query execution
e Replica determination and management

e Incorporating the above into the simulator

e Software developed

First-effort solutions are described in this report along with a use case that describes how the
solutions fit within an operational scenario. They can be improved further by using additional
characteristics of the problem under consideration. For example, currently, a static plan is
generated for each query and the query is processed sequentially by performing a sequence of
operations at different nodes. This can be further improved by generating a dynamic plan at
each node where the query is processed to accommodate intermittent connectivity among
nodes. Furthermore, a query plan can be executed in parallel (using either static or dynamic
plans) to improve response time.

Currently, replication is assumed to be single copy and complete for each relation. This can be
extended to multi-copy and partial replica again to accommodate intermittent connectivity.
Above-mentioned extensions will add complexity to both Meta data management and query
processing.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

1

Figure 1 shows the proposed Service Oriented Architecture (SOA) for the middleware for
supporting query processing over distributed repositories and accommodate fault tolerance.

Figure 1: Architecture
Message format and the algorithms presented in the previous report are assumed.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

2

2. METHODS

The project mainly employed analysis and simulation during the investigations. Extensions of
the project would involve studies on test-bed and eventually deployment in real world
environments.

Management of metadata for the purpose of query management under volatile network
conditions is discussed in Section 5. Exhaustive investigations into query plan generation are
discussed in Section 6. Network management is one of the key challenges to fault-tolerant
computing in a network of UAVs. We discuss methods to maintain network configurations in
Section 7. Section 7 also deals replication management to ensure availability of data when
nodes (UAVs) move in and out of the network. Finally in Section 8, we discuss simulation
methodology and present results.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

3

3. ASSUMPTIONS AND PROCEDURES

In order to ground the analysis for scalable fault-tolerant repositories we needed to define a use
case which can help understand the requirements, issues and constraints over which we will
need to operate.

Our first step was to cite some high level requirements for any such use case analysis. The use
case should depict operations having:

e 10-12 Airborne platforms (UAVs, Helos, Fighters, AWACs, ...)
Which travelling at various speeds (~100 kts, ~200 kts, ~500 kts)
some in formation, some on independent tracks

e Ground platforms (stationary and moving)

Stationary — semi permanent positions
Mobile (vehicle, foot)
e Intermittent connectivity

These operations involve:

e Aggregation of distributed information
Static & dynamic Query Plan generation
Join queries

e Replication and information movement services

Given these requirements our approach
e |dentified actors
e Specified information needs in scenario
e Used representative locations for information sources
e Shows information flow

Example scenarios that we considered were:

e Cooperative Combat Air Patrol. Mixture of UAVs, manned fighters, and AWACs
cooperatively defend Taiwan Strait.
Information needed: Signals, Lines of Bearing, contact positions, tracks

e Armed Reconnaissance / Combat Search & Rescue. Group of UAVs search for specific
targets in a large area.
Information needed: Detection positions, object characteristics

e Unplanned Tactical Intelligence Support. Ground unit requests images from any platform
transiting area.
Information needed: Area of Interest, object positions, object characteristics, collection
period, images

e Persistent Surveillance. Multiple UAVs conduct constant surveillance of Waziristan area
over many months.
Information needed: Object characteristics, object positions, patterns, collection periods

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

4

e Cooperative Close Air Support. Multiple platforms execute a coordinated attack on
forces poised to overrun friendly forces on the Korean peninsula.
Information needed: Blue positions, red positions, object characteristics, risk levels,
confidence levels

e Cooperative Air Interdiction. Multiple platforms execute a coordinated attack on artillery
targets north of the Korean DMZ.
Information needed: Positions, Lines of Bearing, SAM detections

e Cooperative Suppression of Enemy Air Defenses (SEAD). Multiple platforms execute a
coordinated attack on the Iranian IADS.
Information needed: Signals, Lines of Bearing, positions

At the August 2010 quarterly review meeting, AFRL representatives said the Cooperative Close
Air Support scenario was of highest interest. We have begun work on the Cooperative Close Air
Support use case and have identified the following queries (specified in operational language):

1. Get all images taken within last two days of the area bounded by latitude,
longitudel and latitude2, longitude2.

2. Get all images taken six to eight months ago of the area bounded by latitudel,
longitudel and latitude2, longitude2.

3. Get all SAM locations within 12 NM of the area bounded by latitudel, longitudel
and latitude2, longitude?2.

4. Get all AAA locations within 2 NM of the area bounded by latitudel, longitudel and
latitude2, longitude2.

5. Get the latitude, longitude, and elevation for any object of type rocket launcher in
the area bounded by latitudel, longitudel and latitude2, longitude2.

6. Get the current ceiling and visibility in the area bounded by latitudel, longitudel
and latitude?, longitude?2.

7. Get all forward blue force positions within 2 NM of the area bounded by latitudel,
longitudel and latitude2, longitude2.

The selected scenario in fleshed out in Section 4.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

5

4, USE CASE SCENARIOS

Background

The contracted work involved research on ways of storing and retrieving information from
multiple airborne and ground based networked resources. This use case provides an operational
context for the technical capabilities formulated during this effort.

As seen in Figure 2, the chosen scenario involves an outbreak of hostilities on the Korean
peninsula which poses different, and in some ways more difficult, challenges for the envisioned
technology than those that would be experienced in current operations in Afghanistan. In a
Korean conflict, we will not have air supremacy and the air defenses will be significant, making
long duration overflights or orbits over enemy territory impossible.

The use case also incorporates some capabilities that don’t currently exist but are anticipated to
exist within the next five years. These include cooperative autonomous unmanned aerial
vehicles (AUAV), improved communications and networking equipment, and technologies for
fusion, distribution, and retrieval of information

Figure 2: Scenario Location

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

6

Scenario

It's wintertime in Korea, the ground is covered in snow, and there are frequent low ceilings and
visibility. An army maneuver unit advancing towards Pyongyang has been stopped in position
and is taking heavy fire and casualties from dug in, concealed enemy forces.

Two Apache helicopters were lost to heavy enemy fire when they tried to take out the enemy
position. The army maneuver commander requests immediate close air support to eliminate the
enemy threat. The enemy position of concern is in trees with friendly troops within 100 yards.
Even at this close range, friendly ground forces cannot see the firing position because of the
foliage and weather conditions. The area is within range of numerous enemy anti-aircraft
artillery (AAA) and surface to air missile (SAM) sites.

Two A-10Cs are tasked with providing the close air support. Two autonomous mini-unmanned
aerial vehicles flying in an orbit in the low UAV corridor five miles from the Forward Line Own
Troops (FLOT) will also be involved. The mission will be directed by a Joint Terminal Attack
Controller (JTAC) equipped with an advanced terminal.

In preparation for the attack, the two AUAVs are tasked to conduct surveillance over the target
area. They construct a plan to overfly the area from opposite directions to capture imagery from
different angles, and at different times to increase their survivability.

The fused imagery is relayed to the JTAC. The JTAC also requests any imagery of the area
captured prior to wintertime. The combined imagery reveals the enemy position with enough
certainty to derive coordinates.

As the A-10s are proceeding to the contact point, the JTAC forwards the best image to the A-
10s. The A-10s decide on a staggered attack from two different initial points (IPs). They receive
the nine line information from the JTAC. The first aircraft proceeds inbound and is cleared by the
JTAC after the aircraft is visually acquired. The lead takes heavy fire but is able to take a good
shot. He verbally relays target area visual information to the second aircraft that is now inbound
and has also been cleared upon visual by the JTAC. The second aircraft uses the fire and smoke
from the first attack to deliver a devastating blow on the position.

Figure 3 illustrates the mission execution elements.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

7

Figure 3: Mission Execution Elements and Plan

Sequence of Events

Table 1 shows the high level mission events that take place during the mission.

Table 1 Joint Mission Thread

e — I
Ewerl Mo,
1 Lhrat dslie ots tmegyet
=2 T B i S SRS DD I gUsat CAS
k] | Limdt noifed TACF
A& | TACF pofdes reguest bs ARODC
- | AROHE coordineles wAltt Bacsor
1 oL e v Ch apeeoye reauee el

& AR e wE s o el @iceral
¥ CRC sernd abrcraf to comntact peomt

L=]
= AWALCS DaE ses CrithCal upedates o

E b=
= STHSIC hries allncrai
10 Adrcrart depart nrbal peoant [P
11 JTALC cormrols STAS awrcraft
12 Blosnmibs crn Langeel
13 A Rl R e

A more detailed description related to the scenario is the following:

1. Army maneuver commander requests immediate close air support on a heavy weapons
target located at approximate latitude and longitude coordinates.
2. The Joint Air Operations Center (JAOC) tasks two A-10Cs with the mission.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

8

3. The requesting commander is informed about the mission and planned ordinance.
Mission details are passed to the JTAC and the assigned aircraft.

5. AUAVs are used under low ceilings in a high threat environment to get close up images of
the target area.

6. The JTAC uses his advanced terminal to gather and collate information to precisely fix the
target coordinates. The advanced terminal displays a risk envelope around the target based
on planned weapons and attack parameters.

7. The attacking aircraft are given updated mission information via AWACS while enroute to
the contact point.

8. The attacking aircraft and the JTAC establish communications and exchange information via
voice and ground terminal-to-aircraft system links.

9. The attacking aircraft execute a coordinated attack on the target and are visually cleared to
expend ordinance by the JTAC.

10. AUAVs are tasked to conduct post mission battle damage assessment.

&

Distributed Queries

The following queries are executed on networked, distributed battlespace information sources
on behalf of the primary mission elements tasked with the mission.

1. Get all images taken within last two days of the area bounded by latitudel, longitudel and
latitude2, longitude2. This information is needed by the JTAC to precisely fix the target.

2. Get all images taken six to eight months ago of the area bounded by latitudel, longitudel and
latitude2, longitude2. This information about the target area without snow cover is needed by
the JTAC to precisely fix the target.

3. Get all SAM locations and types within 12 NM of the area bounded by latitudel, longitudel
and latitude2, longitude2. This information is needed by the attacking aircraft.

4. Get all AAA locations and types within 2 NM of the area bounded by latitudel, longitudel and
latitude2, longitude?2. This information is needed by the attacking aircraft.

5. Get the latitude, longitude, and elevation for any object of type X in the area bounded by
latitudel, longitudel and latitude2, longitude2. This information is needed by the JTAC and the
attacking aircraft to precisely fix the target.

6. Get the current ceiling and visibility in the area bounded by latitudel, longitudel and
latitude2, longitude2. This information is needed by the JTAC and the attacking aircraft for
attack planning (weapons and tactics).

7. Get all forward blue force positions within 2 NM of the area bounded by latitudel, longitudel
and latitude2, longitude2. This information is needed by the JTAC and the attacking aircraft to
avoid fratricide.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

9

8. Get risk envelope for planned munitions under planned delivery conditions. This information
is needed by the JTAC and the attacking aircraft to avoid fratricide.

Discussion

The central actor for most of the distributed queries in this scenario is the JTAC as this person
has ‘on-scene’ awareness of the ground situation and is best able the assess what additional
information is needed to execute a successful attack. Secondary actors are the pilots of the
attacking aircraft who need the best available information on the locations of air defense
systems and the current weather in the target area, particularly ceiling and visibility.

The central problem that is driving the target-related queries is the need to determine the
precise coordinates of a target that is concealed and in close proximity to friendly forces. To
solve this problem, light-weight, expendable AUAVs are tasked to overfly the target area to
collect imagery, and queries are made to distributed resources for other recent imagery of the
same area, and imagery from a time period before there was snow cover. The distributed
sources for this information could be airborne platforms, theater ground systems such as the
Distributed Common Ground System (DCGS), and national systems.

The aggregation and fusing of retrieved imagery to derive target coordinates would normally be
done in theater Intelligence, Surveillance, and Reconnaissance (ISR) and Command and Control
(C2) systems. However, in thinking about future technical possibilities, and the need for
increased responsiveness in an environment such as a future Korean conflict, these operations
could be accomplished by the JTAC using an intelligent terminal which would also be used to
relay the processed information (annotated maps, images and coordinates) to the attacking
aircraft. Additionally, the attacking aircraft have automated systems that display threat and
friendly position information received over data link.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

10

5. METADATA MANAGEMENT

This section describes the data as well as the Meta data maintained at each node for the
purpose of query processing.

The meta-data is maintained using a relational database. The schema for each piece of meta-
data is described below.

Data at each node is assumed to be a relation with the following format (approximately 100
bytes per tuple/row). Refer to Table 2 for details.

R;j correspond to relation R; at node j. R; (i = j) will be used to represent the primary copy of a
relation at node i. R;; (i <> j) will be used to indicate the replica of Ri in node j.

A field 'TimeOfUpdate' is maintained for each update that happens over the Meta Data to
estimate the accuracy of data and keep a track of how recent the update has been done.

5.1 Data stored at each node

5.1.1 Original Data
Relation R;; is shown below:

Table 2 Relation Format

Timestamp Nodeid Lat Long Obj_type Obj_desc Object_ptr
8 bytes 4 bytes 4 bytes 4 bytes 8 chars Varchar (64) | Pointer (8
bytes)

A number of additional information about the characteristics of each R;; is maintained in a node i
(and periodically propagated to all other nodes) for the purpose of query plan generation. Figure
2.2, shows an example of the original data at each node.

5.1.2 Replicated Data

If a relation R; is replicated at this node(j), then for each replicated relation R;, we need to
maintain the same information as in the previous table. The difference is that this information
may not be current. Every Node maintains a copy of its original relation that is stored at some
other node. R;; will be used to indicate the replica of R;in node j.

Currently, replication is assumed to be a single copy and complete for each relation.
5.2 Network Managed Data

Network Managed data is maintained and updated by the middleware and thereby accessed for
processing by intermediate steps of the query plan generator.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

11

5.2.1 Relation Attribute Information at each node

A number of additional information about the characteristics of each R; is maintained in node i

and is periodically propagated to all other nodes for the purpose of query plan generation and

cost estimation. Selectivity for simple and composite conditions can be inferred from Table 3.

Table 3 Original Data at each node

Attr Name | Type Cardinality | Position | Width | Min Max Unique values in
Value Value | therange

Timestamp | number 1200 1 100 50 140 90

Lat number 1200 2 4 10 100 90

ObjType varchar 4000 3 64 20 350 330

ObjPtr categorical | 2000 3 8 Null Null 10

5.2.2 Relation Information

In addition, we may maintain some information about cardinality and tuple width of each

relation in that node as in table 4.

Table 4 Relation Information

TimeOfUpdate

RelationName

Cardinality

Width

R1

8000

70

5.2.3 Relation to Node Mapping Matrix
A Relation to Node mapping table as in the Table 5, is maintained by the message management

system at each node which tells about the location of the original and the replica of a Relation. A

value of 0 in the replica node column indicates that the replica is not complete at this point in

time and hence is not considered for generating a query plan.

Table 5 Information about the location of replica of each node

Name | Original Node | Replica Node
R1 1 4
R, 2 1
Rs 3 4
R4 4 0
Rn N k

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12

5.2.4 Connectivity Map

A connectivity Map is maintained at each node which checks for whether there is connection
between any two nodes and the current bandwidth between the two. If the Received Signal
Strength (RSS) is zero or below the considerable threshold, connection is considered to be 0 and,
1 otherwise. RSS value lies on a scale of 1 to 10. LSF (the Link stability Factor) is a function of
rate of change of RSS value over a period of time. A pair is considered for the plan generation if

the RSS value at the instant is 1. A sample connectivity map is shown in Table 6.

Table 6 Connectivity Map

Node;

Node;

RSS

LSF

Bandwidth

Startup Cost

R1

Rs

100

10

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13

6. QUERY PLAN GENERATION, HEURISTICS, AND EXECUTION

A query plan for this scenario is envisioned as numbered sequence of plan steps that can be
easily interpreted and executed at any node. Table 7 gives a description of a plan format. Each
step includes the operation to be applied, the data items involved, the node where it is applied,
the name of the result and the node where it is created.

6.1 Query Plan Format

Unlike traditional query processing, the plan needs to be sent from node to node (or partial
plans generated at each node which is not considered in this project) for the purposes of query
processing. A counter indicates the next step to be executed®. An example of a query plan is
shown in Table 8.

Plan counter (initially set to 1 and incremented after the execution of each operation/row)

Table 7: Plan Format

Operation 1 Param | Operandl | Operandl | Operand2 | Operand 2 | Result Result
Loc Location Name Loc
Operation 2 Param | Operandl | Operandl | Operandl | Operand2 Result Result
Loc Loc Name Loc
Operation n Param | Operandl | Operandl | Operandl | Operand2 Result Result
Loc Loc Name Loc
Table 8: Plan Format Example
Operation | Param Operand | Operand | Operand Operand 2 | Result Result
1 1 Loc 2 Loc Name Loc
Select A>100 R; 1 Null Null R 1
Project Ay, As, Ay Ry 1 Null Null R.” 1
Move Null R,” 1 Null Null R” 2
Semiloin A=C R” 2 R, 2 SR; 2
Join B=D Riz 2 RZH 2 JR, 2

The plan format described above is sufficient to describe any arbitrary relational query plan
involving selects, projects, and joins (also known as an SPJ query). The above format can also
accommodate SQL aggregate operators, such as a SUM, COUNT, AVERAGE, MINIMUM, and
MAXIMUM needed for the next phase.

!t is also possible to send the entire plan (or even portions relevant to each node) to all nodes that
execute portions of the plan in which case it need not be sent from node to node!

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

14

A query is executed as follows. A complete plan is generated at the node where the query is
received using the metadata stored in that node. The plan is then sent to the node in which the
first operation takes place (if it different from the node where the query plan is generated)
along with a value indicating the starting plan step. The interpreter in that node uses the plan
counter to execute as many steps as possible in that node. When a move or copy is
encountered, it sends the data as well as the plan (most likely the remaining portion of the plan
to reduce the amount of data transferred) to the next node. This process continues until the last
step of the plan is executed. The result of the query will be in the node that executed the last
step.

Currently, a complete query plan is generated as follows. Each node in the architecture has the
same query plan generator and uses the only the Metadata in that node. Note that the
metadata is updated by the underlying mechanism described in Section 2. The query plan is
constructed one join/semi-join at a time. Cost computations of partial plans are done using the
statistics and formulae for computing selectivity (described below). The lowest total cost query
plan is used as the final plan after all possible plans are explored. This will result in an optimal
plan. Several heuristics are explored as part of this project to reduce the total computation
required for generating a plan. These are also compared.

The complexity of the optimal plan generation is k" where n is the number of joins and k is the
number of alternatives for each join. Currently, k being used is about 18 (multiple join
alternatives, multiple semi-join alternatives and the same using replica as well) and we are
assuming no more than 3 joins in a query. With this assumption, we will explore 5000+
alternative query plans and cost computation for each one of them. We have incorporated some
heuristics to limit the number of plans carried forward after each join. Simulations will be
performed to validate the heuristics to make sure they are meaningful.

Statistics in the form of cardinality and domain characteristics are used for cost estimation. Join
and condition selectivity are inferred from the statistics maintained. Result sizes are also
estimated and its accuracy is important as choice of the best query plan is primarily based on
the cost of data transfer based on availability of connectivity.

Below, we outline the statistics used for evaluating the cost of a (partial) query plan. Most of
these are well-established for the relational model. We do not include the processing cost for
the operation/plan, but only the data transfer cost. Processing cost depends upon the
availability of index and other structures and mainly influences the order of join (which we take
into account in our plan generation process). Beyond this project, it will be useful to determine
what access structures are meaningful and take the processing cost into account as well. In each
step, the plan can be executed by converting it into an SQL statement if there a relational
database is used for storing data in that node.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

15

6.2 Statistics used for plan generation

Card(R): Number of tuples in relation R
Card(R.A): Number of distinct values of attribute A of R

C,: Fixed cost to start up a connection

LSF;: Current Link Stability Factor between nodes i and j (in bytes/time unit); O if not
connected

Select: pis a fraction of tuples satisfying a given select condition
Result size: card(S) = p(Cy) * card(R) // when select(C,) is applied to R
p (A =value) = 1/card(R.A)
p (A > value) = max(A)- value/ max(A) — min(A)
p (A < value) = value — min(A) / max(A) — min(A)
p (A #value)=1-1/card(R.A)
p (A =v; AND B=v,) = 1/card(R.A) * 1/card(R.B) //assuming independence
p (A=v,; ORB=v,) = 1/card(R.A) + 1/card(R.B)
For a select operation, width of the result is the same as that of the operand
Project:For S = project(A, A,, ..., A)[R] with attributes A;, A,, ..., A,and m<n
card(S) = Card(R), if projected attributes include a key of R,

= max{card(R.Aj),,..card(R.A;)} otherwise

[
=
=

T= R[A=B]S

card (T) is always < card (R) * card(S)

Card(R[A=B]S)= max{card(R), card(S)}, if Ais a key of R and S a foreign key
Else, Card(R[A=B]S)= card (S.B)/ card(dom(B))

Theoretically, Join Selectivity, JS= card(result)/ card(cross product)

width(T) =width(R) + width(S) //width always refers to the width of a tuple

In case of Natural Join, since natural join also eliminates one of the join
attributes, the width of join attributes is subtracted from the width of result.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

16

Cost= B * card(S) * width(S) if Relation S is sent to the node of R.

Cost = B;; * card(R) * width (R) if Relation R is sent to the node of S.

Semi-Join: T= R<A=B]S thatis, S is projected on B and sent to the node of R for the
semi-join

p(selectivity of semi-join) is needed to estimate the result size

p = card (S.B)/card(dom(B)) // card(dom(B)) denotes the number of distinct
values in B’s domain

Card (T) = p * card(R)
width(T)= width(R) + width(S.B)
Cost (Move(S.B in node i to node j)) = C, + B;; * card(S.B) * width(S.B).
The cost for T = R [A=B>S can be computed similarly.
6.3 Query Plan generation Design

In this section, we present the algorithm that has been developed and implemented for this
project. We start with the UML diagrams, input from which a QueryObject is generated which is
used by the queryPlanGenerator to generate all plans for that query using: join methods, semi-
join methods, hybrid of join and semi join methods. Single-copy replication is also taken into
consideration for generating the above plans.

The following UML shows the classes used for the implementation of the query plan generator.

QueryObject

relations : ArrayList<String>

projectionAttributes: HashMap<String,ArrayList<String>>
selectConjuncts : HashMap<String,ArrayList<Conjunct>>
joinConjuncts : HashMap<HashSet<String>,ArrayList<Conjunct>>
targetNode: String

dbinteractions: dbinteractions

+QueryObject(String query)

+getProjectionAttributes(String relation): ArrayList<String>
+getRelations(): ArrayList<String>

+getTargetNode():String

+getSelectConditions(String relation): ArrayList<Condition>
+getJoinConditions(String relation1): ArrayList<Condition>
+getJoinConditions(String relation1,String relation2): ArrayList<Condition>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17

+toString() : String
-isSelect(Condition testCondition): boolean
-isJoin(Condition testCondition): Boolean

r

|

| 1..%

Conjunct Condition
conditions: ArrayList<Condition> leftOperand: String
Conjunct(ArrayList<Condition>) 1.1 rightOperand: String
getConditions():ArrayList<Condition> "' | operator: Operator
toString() : String not: Boolean

Condition(*Full Argument*)
getters...
toString() : String

DBInteractions

conn: Connection

establishDBConnection()

checkAttributeName(attributeName, relationName : String) : Boolean
getRelationName(attributeName : String) : ArrayList
relLocations(relationName : String) : ArrayList

relCardinality(relationName : String) : long

relWidth(relationName : String) : long

attributeDetails(attributeName, relationName : String) : ArrayList
connectivityDetails(nodel, node2 : Int) : ArrayList
getloinSelectivity(joinCondition : Condition) : Double
getSelectSelectivity(conjunctCondList: ArrayList<Conjunct>, relationName : String) : Double
getCondSelectivity(selectCondition : Condition, relationName : String) : Double

PlanSpace

planList : ArrayList<aPlan>

PlanSpace()

createPlans(queryObject: QueryObject, dbObjetc: dbinteractions)
getNumPlans(): Int

getPlan(index : int): aPlan

sort()
toString() : String
Al
I
| 187k
aPlan

steplist : ArrayList<planStep>
semiloins: Stack<String>
currentLocations: HashMap<String, String>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

18

joinNames: HashMap<String, String>
semilJoinConditions: HashMap<String, String>
totalCost : double

planNo : int

planType: int

numljoins : int

totalloins: int

getTotalCost() : double
getStep(index : int) : planStep
addStep(**full Step arguments**)
addStep(step : planStep)

checkFor Join(join : String) : boolean
addJoin(step: PlanStep)
addSemiloin(step: PlanStep)
getloinResultLoc(Rname : String) : String
getNumloins() : int

getPlanType(): int

getTotalloins() : int

toString() : String

|
|

| PlanStep 1%
stepData : String|[]

0: Operation : String
: Param : String
: operandl : String
: operand?2 : String
: resultName : String
: oplLocation : String
: op2Location : String
7: resultLocation : String
cost : Double

Full argument constructor
getters...
setters...

o uh, WNE

The query to be processed is parsed (using the JQLParser, an open-source software) and its
components are packaged into a QueryObject object. The QueryObject is constructed from a
String containing the SQL query - the format for the String is a standard SQL SPJ (SELECT-
PROJECT-JOIN) query preceded by TARGET node number to which the query is sent and where
the result is expected. Currently, the result of a query is sent to only the target node. However,
it is possible to extend the algorithm to send the results to multiple nodes (and even to optimize
for the set of nodes) if need be. To simplify parsing, select and join conditions are assumed to be
given in conjunctive normal form (or CNF). The QueryObject constructor parses the string and
populates internal data structures with the target node, projected attributes, and select/join
conditions. Once the query object has been created, it is passed as an argument to the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19

PlanGenerator object. The PlanGenerator object can call on public methods of the QueryObject
to get ArrayLists of all projection attributes, join conditions, and select conditions. Additionally,
methods exist for getting all projection attributes and conditions per relation. For example, a call
of getProjectionAttributes("rl") returns an ArrayList containing all projection attributes from the
relation "r1".

QueryObject contains elements of a query as described below:

The FROM relations are stored as an ArrayList of Strings; no special data structures are required,
and the user will simply ask for all relations.

Projection attributes are stored as a HashMap (for efficiency of lookup). Given a key (of type
String) of the relation, an ArrayList of all projection attributes (type string) on that relation is
returned.

Join and Select conditions each have a separate HashMap. They are stored similar to projection
attributes, but with a few differences; an ArrayList of Conjuncts is returned in each case. In the
case of Join, since two relations are involved in a join, the key is a pair of relations (HashSet of
String), rather than a single relation.

The Conjunct and Condition classes are used to represent select and join conditions. The
Conjunct class contains an ArrayList of Conditions - these Conditions are primitive conditions -
all they contain are a left operand, a right operand, a comparison operator and a Boolean value
representing the existence of a "NOT" operator. When an ArrayList of Conjuncts is returned by
any method of the QueryObject, it is assumed that all Conjuncts contained by the ArrayList
should be "AND"ed together, and that all the conditions of an individual Conjunct object should
be "OR"d together.

Currently, we are parsing an input string containing SELECT, FROM, and WHERE clauses. Some
reasonable assumptions are made on the select and join conditions (e.g., being n CNF). The
WHERE condition is parsed by our code and the rest by the JQLParser. The next step is to use
JQLParser to parse everything to populate the QueryObject.

Plan Generation Objects

PlanStep: Each PlanStep contains seven strings, one operator, parameters (as string), 2
operands, 2 operand locations, a result name and a result location. In addition
each step also stores a cost. The cost is zero except for steps involving move or
copy operation.

The functions for PlanStep consist of getters, setters and a toString to print, so it
is purely a data storage class.

aPlan: Each aPlan contains an ArrayList parameterized to PlanStep, which is the body
of a plan, a total cost, a plan number, a stack, and three HashMaps. The stack

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20

keeps track of which relations are needed for the second half of a semijoin
operation. The first HashMap maps relation names as keys to the name of the
relation they have been joined to or themselves if they have not been joined.
The second HashMap maps relation names to their locations. The third
HashMap maps leftover semijoin relations to their conditions after the first part
of a semijoin has been performed since after the first semiJoin has been
performed they may not have the same relation name.

The functions for aPlan consist of getters, setters and functions for adding steps
which ensure that the maps are up to date. It also contains a toString function
that will print all of the steps in a plan and a compareTo function that allows the
plans to be sorted by their total cost.

PlanSpace: Contains an ArrayList of aPlan that stores all the plans generated during the
algorithms runtime.

The functions of a Plan consist of getters, setters, a function to sort all plans by
their cost and a function to populate the list of plans with the proper amount
for a query. It also contains a toString function to print all of the plans.

6.4 Plan Generation Algorithm

The generator begins by generating 18 distinct partial plans (initially empty) for each join. As an
exhaustive algorithm, it generates 18" plans for a query containing k joins. It is evident that
this approach is not viable beyond a few joins. This is being done so that later we can compare
heuristics-based plans with the optimal ones to analyze the effectiveness of heuristics we come
up with (e.g., top-k in each iteration, top-k cumulatively, top-k for each type of plan.). The
generator then iterates through the relation list and creates the necessary select statements.
Then all of the attributes required are projected on the output and join condition attributes to
minimize the data transfer across nodes which form the bulk of the cost of query processing in
this environment. Since most of the plans will use these initial select or project statements (to
reduce the width and cardinality of the relation), these same statements are attached to every
plan.

For plan alternatives using joins the generator moves the required relations to the location of
the join and then performs the join. Even for this, projections are applied to reduce the overall
width and cardinality of relations moved. The plan class takes care of updating intermediary
name, location, and condition information. Then the generator moves on to the next plan.

For plan alternatives using semijoins, the relation that will be semijoined to is copied and
projected on the attributes used in the specific join condition to minimize data transfer. Then it
is moved to the location of the semijoin. The semioin is performed. When the semijoin step is
added to a plan the plan updates name, location, and condition information and in the case of
semijoins the output relation and the relation that still needs to be semijoined to finish the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

21

operation is added to a stack to keep track of the remaining semijoins (to generate chained semi
join plans) . The next plan is then processed.

For multiple joins, after all of the plans have been processed with the first join, all of the joined
relations will be projected on the remaining join attributes required and then algorithm will
iterate through all the plans again performing the remaining joins and semiloins. After a
relation has been joined, its current location is considered to be that of the result of the join
even if it currently has a replica, which may cause some of the plans to be the same.

After all cases have been exhausted, the algorithm goes through and finishes each case by
iterating through the stack of remaining semijoins completing the remaining semijoins in reverse
order and then moves the final relation to its output node.

During each step of the plan generation, the cost associated with a move or a copy is calculated,
if there is no direct connection between nodes the cost is considered prohibitively high and
value is automatically forced to a very high level by using a very low bandwidth for the
calculation. After calculation the plans can be viewed in sorted form. The plan generator
generates a summary of: number of plans generated, lowest and highest cost plan numbers. It is
possible to view any of the plans in detail. The same process is used for generating plans using
heuristics except that a subset of plans are used in each iteration which are selected based on
the specific heuristic.

6.5 Examples of Generated Plans

Consider a query Q that is sent to node 1 and the results of the query will be sent to node 1.

Q: TARGET 1
SELECT *
FROM U_1_D,U_2 D,U_5 D"
WHERE ((U_5_D.OBJTYPE=1))"
AND ((U_1_D.LAT>U_2_D.LAT))"
AND ((U_2_D.LONG>U_5_D.LONG))");

Below, we present three plans with their cost and some information about how they were
generated in terms of plan combinations.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

22

The lowest cost plan is

Plan Numbe

r 253

Total Cost 493.87333333333333 (in milli seconds)

SELECT
COPY
PROJECT
MOVE
SEMIJOIN

SEMIJOIN
MOVE

(U_5_D.OBJTYPE=1)
null

LAT

null

U_1 D.LAT>U_2 D.LAT
null

LONG>U_5 D.LO
LAT>U_2 D.LAT
null

Yo ~
c C
=N

' D.
D.

_R->
_R->
R_
u_

|
[NlH (S ENe)|

cccccccc
lvlviviviwvivivelw)

lH)i
ol
ol

U 2 D _SJ R->

This plan is a combination of alternatives 15 (for the

Locl

—— ——— — —— — - —
agoaNnNDdaaoa

null

null

null

null

C->R->U_1 D

nul

U 5 |
U2DSIR>U1DJ
null

1
D

|
+
|
|
|
|
|
|
|
|
|

¢
v
;IU
V

C->R->
C->R->

CCC|CCC

<
il
O

> >
<<
oo
O O

first join) and 2 (for the second join)

This plan using only semi joins has only a slightly higher cost

Plan Numbe

r 263

Total Cost 585.942 (in milli seconds)

Operator
SELECT
COPY
PROJECT
MOVE
SEMIJOIN
COPY
PROJECT
MOVE
SEMIJOIN
MOVE
SEMIJOIN
MOVE
SEMIJOIN
MOVE

This plan

Parameter
(U_5_D.OBJTYPE=1)
null

null
(U_1_D.LAT>U_2 D.LAT
null
LONG
null
U 2 D.LONG>U_5 D.LO
null
U_2 D.LONG>U_ 5 D.LO
null
U 1 D.LAT>U_2 D.LAT
null |

—— ———— ——— — ——— — - —
~ ~ ~

is generated from alter

U5 D SJU2D SJR-

natives 15 and 11

NONNOONNNNOIOTOO

null

C->R->U_1.D

null

null

null
C->U_2 D SJ R->U_1D
null

U 5D SJ U 2D SJR-
null
U5DSJUZ2DSJR-
null

—————— ———— ——— — - —

—— ———— ———— —— — — - —

Result Name

_SJ_R->U_1_|

1
vV Vv
(RN

v

|
|
|
|
cccc CIC cc CIC
|
|

NI\)NNll\JNII\)N

nNnmmmmnmnmnom
;IU
v
c
>

JIU
V
c
>

N

CCCICCC
(J'IU'IU'II(J'IU'IU'I

lvRviviviwie)

NN OLOHOLNnOOO
[S Sy Sy S

UUUIUUU|UUUU

0

V.

s
2222

N
JIU
v
c
>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

23

—r———— ——— — o —
PO NNOIOO

RPOONNOONNNNOOO
————— (——— ——— — —— - —

0.000000
0.000000
0.000000
393.333
0.000000
50.140000
0.000000
0.000000
50.400000

—— ——— ——— — o —

0.000000
0.000000
0.000000
393.333333
0.000000
0.000000
0.000000
40.390000
0.000000
60.346667
0.000000
41.040000
0.000000
50.832000

The highest cost plan is

Plan Number 3
Total Cost 175117.8 (in milli seconds)

Operator | Parameter | Operand 1] Locl | Operand 2] Loc2 | Result Name] LocR | Cost
---------- S
SELECT | (U_5_D.OBJTYPE=1) | U 5D | 51 null | null | U5D | 5] 0.000000
MOVE | null | U1lpD| 1] null | null | U1bD| 2 | 50010.000000
JOIN J](U_1_D.LAT>U_2_ D.LAT] Uu1lpD]| 2] Uu2bD| 21 U1lbDJuz2pbD]| 2 | 0.000000
MOVE | null | UulbDJuz2pD]| 2] null | null | U1lbDJuz2pbD]| 1 | 57.800000
MOVE | null | US5D| 5] null | null | U5D| 1 | 125050.000000
JOIN](U_2_D.LONG>U_5_D.LO]| UulbDJu2pD]| 1] U50D | 1] U1DJUu2DJUS5DI] 1 | 0.000000

This plan is generated from alternatives 1 and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

24

6.6 Heuristics-Based plan generation

The purpose of generating a very large plan space (in the above description) is to demonstrate the cost
differences between best and worst plans. The above algorithm is still not exhaustive in that it does not
consider all join combinations. As can be seen clearly, there is a significant difference between the best
and the worst pan. During testing, we also realized that the connectivity plays a critical role in that if
only one way connection is available between nodes, it impairs good plan generation.

We have added a number of heuristics to the above algorithm to compare their performance to the
optimal plan generated by the above algorithm. We can use this implementation to analyze various
aspects such as connectivity, bandwidth, as well as selectivity to understand the types of plans
generated. We have identified the following heuristics to be useful and have implemented then so that
we can compare them to the plan produced by the above algorithm.

Choose top k lowest cost partial plans in each round for expansion or iteration (Top-k-iteration)

Choose top k lowest cumulative cost (up to that round) plans in each round of expansion (Top-k-
cumulative)

Categorize plans into join-based, semi-join based, and hybrid. Choose top k lowest cost plan from each
category for expansion in each round (Top-k-join-type)

In addition to the above, a number of other possibilities such as incremental plan generation, looking
ahead at connectivity and pruning plan alternatives, getting dynamic cost information and then
generating partial plans are possible. Note that connectivity will play a significant role not only in the
generation of a complete plan, but also its cost. If sufficient connectivity does not exist among the nodes
that participate in the query (including the nodes that have a replica), a complete query plan may not
even be feasible. The presence of replica increases the probability of generating a complete plan and if
several exist, heuristics hopefully will choose a good one without having to generate all plans. A
heuristic that involves connectivity would be very useful for this environment.

In Top-k-iteration, k (specified as a parameter) lowest cost plans in that round are chosen in each round
for further expansion. This works as a local heuristic and hopes that the lowers cost plans will continue
to show good cost value.

In Top-k-cumulative, k (again specified as a parameter) lowest cumulative cost plans up to that round
are chosen in each round. This, hopefully, will improve upon the previous one in choosing plans that are
good up to that round.

The Top-k-join-type is a different type of heuristic as we have different types of partial plans and their
costs are likely to be different. Here, k lowest cost plans from each type is chosen for the next round. In
order to compare them in a fair manner, the k value need to be lower (1/3 as we have 3 join types) so
that the same number of plans are carried forward in each round.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

25

The above three heuristics have been implemented. The software has two modes: interactive and
experimental to make it easy to test and use. In the interactive mode, a query can be given at the
prompt (or in a file) and a heuristic specified for its plan generation. The generator will indicate the
number of plans generated as well as the lowest and highest cost plans (along with plan number). One
can output (or look at) any plan in details by typing the plan number. It is also possible to provide a file
input to process multiple queries in this mode. The selectivity and cardinality information is statically
initialized. The connectivity is also statically initialized at the start of the system. This can be easily
changed by loading a new or different relation before executing the plan generator.

In the experimental mode, one can either provide input at the prompt or submit a file for processing.
The input consists of (whether given as prompted or in a file): number of queries to be generated, seed
for query generation, number of connectivity configurations to be used in the experiment, seed for
configuration, and connectivity factor. The generator has a random query generator on the schema
stored in the system and generates the desired number of queries. The seed is to ensure repeatability of
experiments as well as generate a new sequence of pseudo-random queries. The same is true for
network configurations and its seed. The connectivity factor is use to control the sparseness of the
connectivity matrix. If there are n nodes, the connectivity factor can vary from 0 to (n-1), O indicating no
connectivity at all and (n-1) indicating complete connectivity. The connectivity itself is generated
randomly to satisfy the parameters specified.

The above setup allows one to perform different types of experiments. For each query, connectivity can
be changed to determine how the plan cost changes and can also compare the optimal cost with
heuristics-based plan costs. It is possible that due to the connectivity, a number of plans cannot be
completed resulting in a high cost. Queries or connectivity sequences can be changed, independently, by
varying the corresponding seed.

6.7 Experimental Results

In order to test the effectiveness of the heuristics proposed for the query plan generator, we performed
two sets of experiments that tested these heuristics across different connectivity matrices and several
different queries.

6.7.1 Impact of Connectivity on Plan Cost

In this experiment, we generated a single query (shown below) and computed the top 3 plan cost using
the heuristics proposed along with the optimal plan cost on six different configurations of the
connectivity matrix. We had to keep the connectivity large; otherwise, no plan was generated. Since the
connectivity matrix is large in size, we do not show it here. Instead, we display the configuration file
used for this experiment.

Query 1: target 2
SELECT * FROM UAV_2_DATA, UAV_4 DATA, UAV_6_DATA WHERE
((UAV_2_DATA_NODEID=76)) AND ((UAV_2_ DATA.LONG>=804)) AND
((UAV_6_DATA.LONG<=540) AND
((UAV_2_DATA.LAT=UAV_4_DATA_.LAT)) AND (UAV_4_DATA.LONG=UAV_6_DATA.LONG));

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

26

Configuration File:
package afrl;
public interface afrlConstants

{
int NUMBER_OF_QUERIES = 1;
//Number of queries to be generated by the random queryGenerator
String FILE NAME = "outputFiles/aprl3 queries_expl.txt";
//Name of the file the generated queries will be stored in
String NETWORK_FILE_NAME = "outputFiles/network/april3_network_expl';
//Name of the outpur file the connection matrix is stored in
int SEED = 4406235;
//Seed for query generator
int NETWORK_DEGREE = 11;
//Number of connected nodes
int NUM_NETWORKS = 6;
//number of connection matrices to be generated per query
int NETWORK_SEED = 33152035;
//seed for connection matrix generator
int NUM_NODES = 13;
//number in noes in connection matrix
int TopKOptimal = 3;
//number of optimal plans to dlsplay, 0 to show all
int TopKCumulativeCost = 3;
//Set heuristic to K value to keep or zero for inactive
int TopKlterationCost = 3;
//Set heuristic to K value to keep or zero for inactive
int TopKJoinType =9;
//show k number of join type heurlstlc applying cumulative heuristic to k/3 of each type
boolean displayNonConnective = false;
//Set to true to display non connective plans
boolean heuristicDebug = false;
//set to true to dump heuristic execution data to files
3

The results of the experiment are shown below.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

27

Table 9 Costs incurred by various approaches

Network | Optimal | Optimal | TopK TopK TopK TopK TopK TopK
Join Semi- Cumulative | Cumulative | Iterative | Iterative | Join- Join-type
Join Join Semi-Join Join Semi-Join | type SemiJoin
Join
1 2.81 29.01 2.81 2.81 29.01 2.81
2 7.80 1.75 10.88 268.38 1.75 10.88 1.75
3 1.47 10.88 268.38 10.88 11.73 1.47
4 1.61 13.58 1.61 1.75 13.58 1.61
5 1.01 12.32 1.01 1.01 12.32 1.01
6 1.81 10.65 268.38 1.47 10.65 2.02

Figure 4: Effect of Heuristics on different connectivities

The graph as well as the table, shows the cost (in milliseconds) incurred by the various approaches
towards generating the top-3 best plans for the given query.

Based on the results, it can be observed that the plan generation process depends heavily on the
connectivity between nodes. For many network configurations, no plan is generated even in optimal join
case. However, amongst the different heuristics, the Semi-join approaches appear to be suitable for the
current set of connectivity configurations. However, determining the exact relationship between the
type of join and the corresponding costs of plan generation will require further study.

6.7.2 Plan cost across multiple network configurations for Different Queries
In this experiment, we generated 5 different queries (shown below) and tested the three heuristic

algorithms along with the optimal algorithm on a same configuration of the connectivity matrix. Like the
previous experiment, we display the configuration file used for this experiment.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

28

Query 1: target 2 SELECT * FROM UAV_2 DATA, UAV_4 DATA, UAV_5 DATA WHERE
((UAV_2_DATA_NODEID=66)) AND((UAV_2_DATA.LONG>=614)) AND ((UAV_5_DATA.NODEID=77)) AND
((UAV_2_DATA.LAT=UAV_4 DATA.LAT)) AND ((UAV_4 DATA.NODEID=UAV_5 DATA.NODEID));

Query 2: target 5 SELECT * FROM UAV_5 DATA, UAV_10 DATA WHERE ((UAV_10 DATA.LAT=609))
AND ((UAV_10_DATA.OBJPTR<=246)) AND ((UAV_5 DATA.OBJPTR=UAV_10 DATA.OBJIPTR));

Query 3: target 9 SELECT * FROM UAV_9 DATA, UAV_10 DATA, UAV_5 DATA WHERE
((UAV_9_DATA.LONG>351)) AND ((UAV_9 DATA.LAT>=40)) AND ((UAV_5_DATA.LONG<=804)) AND
((UAV_9_DATA.OBJPTR=UAV_10_DATA.OBJPTR)) AND ((UAV_10 DATA.LAT= UAV_5 DATA.LAT));

Query 4: target 6 SELECT * FROM UAV_6_DATA, UAV_10_DATA, UAV_4 DATA WHERE
((UAV_6_DATA.LAT<55)) AND ((UAV_6_DATA.NODEID<=260)) AND ((UAV_4 DATA.NODEID=22)) AND
((UAV_6_DATA.TIMESTAMP=UAV_10_DATA.TIMESTAMP)) AND (UAV_10_DATA.OBJPTR=
UAV_4_DATA.OBJPTR));

Query 5: target 9 SELECT * FROM UAV_9 DATA, UAV_3 DATA, UAV_2 DATA, UAV_4 DATA WHERE
((UAV_9_DATA.TIMESTAMP<=764)) AND ((UAV_9 DATA.LONG<102)) AND ((UAV_2_ DATA.NODEID=66))
AND ((UAV_2_DATA.LONG>=614)) AND ((UAV_9 DATA.LAT=UAV_3 DATA.LAT)) AND

((UAV_3 DATA.LAT=UAV_2 DATA.LAT)) AND ((UAV_2 DATA.OBJPTR=UAV_4 DATA.OBJPTR));

Configuration File:
package afrl;

public interface afrlConstants

{
int NUMBER_OF_QUERIES = 10;
//Number of queries to be generated by the random queryGenerator
String FILE_NAME = "outputFiles/aprl3_queries_exp2.txt";
//Name of the file the generated queries will be stored in
String NETWORK_FILE_NAME = "outputFiles/network/april3_network_exp2";
//Name of the outpur file the connection matrix is stored in
int SEED = 4406235;
//seed for query generator
int NETWORK_DEGREE = 11;
//Number of connected nodes
int NUM_NETWORKS = 1;
//number of connection matrices to be generated per query
int NETWORK_SEED = 32152035;
//seed for connection matrix generator
int NUM_NODES = 13;
//number in noes in connection matrix
int TopKOptimal = 3;
//number of optimal plans to dlsplay 0 to show all
int TopKCumulativeCost = 3;
//Set heuristic to K value to keep or zero for inactive
int TopKlterationCost = 3;
//Set heuristic to K value to keep or zero for inactive
int TopKJO|nType = 9;
//show k number of join type heurlstlc applying cumulative heuristic to k/3 of each type
boolean displayNonConnective = false;
//Set to true to display non connective plans
boolean heuristicDebug = false;
//set to true to dump heuristic execution data to files
3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

29

The results of the experiment are shown below.

Table 10 Costs incurred by various approaches for Top K Plans

Query Optimal | Optimal TopK TopK TopK TopK TopK Join- | TopK Join-
Join Semi-join | Cumulative | Cumulative Iterative Iterative type Join type Semi-
Join Semi-Join Join Semi-Join Join
Queryl | 6.19 1.19 172.00 7.91 6.19 1.19 172.00 7.91
Query2 | 52.34 6.41 4853.07 390.31 6.41 4853.07 390.31
Query3 | 60.76 125.39 8557.31 785.46 60.76 125.39 60.76 125.39
Query4 | 0.89 1.14 14362.78 1.21 1.34 16201.62 1.12 1.21
Query5 | 0.52 0.87 0.70 1.29 0.62 1.95 0.70 1.29

Figure 5 Effect of Heuristics on different queries

The graph as well as the table, shows the cost (in milliseconds) incurred by the various approaches
towards generating the top-3 best plans (average) for 5 different queries on the same connectivity
matrix configuration.

Based on the results, it can be observed that the plan generation process depends hugely on the
connectivity between the nodes. Similar to the previous experiments, amongst the different heuristic
approaches, the Semi-join approaches appear to be suitable for the current set of connectivity
configurations.

As connectivity plays a critical role even for obtaining a plan (not necessarily a good plan), replication becomes
even more important. We have assumed single-copy replication in this work. This needs to be extended to multiple
copies. Also, it becomes important to include predicted connectivity into plan generation heuristics. Currently, it is
not included. A different set of heuristics bases on stability of the connections, multiple replicas (both partial and
complete) seem to be important. Also, parallel pan execution and dynamic plan generation (postponing the use of
connectivity information until needed) seems to be critical for this scenario.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

30

7. REPLICATION AND NETWORK MANAGEMENT

Message format for different types of messages is shown below in Figure 6. Source ID and
destination ID are 5-bit unique addresses of the corresponding nodes (UAVs). Multiple
flags are used to indicate the type of data in the payload.

SP |[SP |[D|N| I |M|A|Q|SourcelD | DestinationID | Timestamp | Payload
Figure 6 : Message Format
Table 10: Interpretation of flags
Flag bit Length Payload Description
Content
D-Discover | 1bit Meta data Message to discover new nodes in the network.
N-Neighbor | 1 bit Meta data and Message to exchange connectivity information between
Adjacency matrix | various nodes in the network.
I-Direction | 1 bit Node Direction Message to exchange the direction of travel of a node.
M-Data 2 bits Result of query M=1: Message is exchanged directly with the destination
execution node as a part of the MOVE operation.
M =11: Message is exchanged directly with the
destination node as a part of the COPY operation.
M =10: Message is sent through a series of intermediate
nodes to the destination node.
A-Alive 1 bit No Payload Message to indicate a node’s presence to its neighbors.
Q-Quit 1 bit No Payload A node moving out of range sends this message to its
neighboring nodes.
Setup

Initially, each node is by itself and not connected to other nodes in the network. At time
T=t1 (say) when another node comes within communication range, a neighbor discovery
message DISCOVER is sent by one or both the nodes. The DISCOVER message as shown in
Figure 7comprises,

The source identifier (ID)

The destination ID is typically a Broadcast address

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

31

e A Timestamp
e Meta Data information
e D =1, indicating that the payload contains Meta data information.

SP |[SP |1 |N| I |M|A|Q]SourcelD |DestinationID | Timestamp | Payload

Figure 7: DISCOVER

Each node receiving the DISCOVER message, responds with a NEIGHBOR message as
shown in Figure 8. The NEIGHBOR message contains,

e The source identifier (ID)

e The destination ID is typically a Broadcast address

e A Timestamp

e N =1, indicating that the payload contains information about the node’s
connectivity as well as metadata information.

¢ [I=1,indicating that the payload contains a node’s intended direction of travel
as shown in Figure 9.

SP |SP |[D|1 |1 |M|A|Q|SourcelD | DestinationID | Timestamp | Payload

Figure 8: NEIGHBOR

SP |[SP |[D|N|1|M|A|Q|SourcelID | DestinationID | Timestamp | Payload

Figure 9: DIRECTION

A series of DISCOVER/NEIGHBOR messages among nodes within communication range
results in an ad hoc network comprising connected nodes (UAVs). Similar
DISCOVER/NEIGHBOR messages exchanged periodically either to gain new or retain
existing connections.

Each node in the ad hoc network has information about both the connectivity as well as
metadata of each of its neighboring node.

Each node maintains its connectivity with other nodes in a connectivity graph Gy, and
exchanges connectivity information (The local Gn) periodically with its neighbors. It is
likely that there are one or more such ad hoc networks and isolated nodes in the system at
any given time. Gy is constructed through a series of DISCOVER/NEIGHBOR message
exchanges among nodes. Initially, each node starts as an isolated node and adds neighbors.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

32

Algorithm executed at each node after DISCOVERY
DISCOVER_NEIGHBOR
{ AtnodeN;
if received DISCOVER from Node N;
Update adjacency list at Node N;
For each node Ni in the adjacency list of node N;
N=1

Send NEIGHBOR message (Updated adjacency list, Meta data
information)

Data exchange between nodes

Consider a snap shot of the system shown in Figure 10. Let N;, N2, N3 be three nodes in the
physical network. Data items (relations) RI1 and RZ, R3 are represented as data nodes and
reside on nodes N;, Nz and N3z respectively.

O TN

— e | —

Figure 10: Network snapshot

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

33

Each physical node in the network exchanges information about what Relational data it contains as a
part of meta data exchange which is included in the DISCOVER message. Hence node N; knows that
nodes N, and N3 contain data items R, and R; respectively. Similarly the other two nodes get to know
that node N; contains data item D;.

When a query arrives at node N;, a query plan is generated based on the current connectivity of the
network. The generated plan contains operations that need to be executed at various nodes with the
guery execution beginning at N;. Operations local to the node N; are carried out first and when the first
MOVE command is executed, the results of the partial query execution needs to be transferred to the
next physical node in the plan.

The flag M is set to indicate that the payload contains the following as shown in Figure 11:
Result of the local operations at node N;.
The query plan

A counter value to indicate that the next node in sequence needs to execute the query starting at the
instruction pointed to by the counter value.

SP [SP [D|N|I |1 |A[Q]|N; N, Timestamp Queryplan,Res;,Counter

Figure 11: Data Message

For example:

Let the query Q that was issued to node N; be Q=114 5(0c1<10 (R1)) > 7t8(0c2-20 (R2))

From the above mentioned figure, R; is on Node N; and R, is on node N,.

Let the result at Node N; be Res; = 1y (0c1<10 (R1))

Res; along with the query plan and the counter needs to be sent to Node N, for further execution of Q.
At Node N, the following query is executed to give the final result of query Q.

Res,=Res;>1ts(0cs-20 (R2))

Algorithm to execute MOVE
MOVE (Res;, Node N;, Node Nj)

{ Node N;: The node where the result of the first part of the query Q was executed.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

34

Node Nj: The next node in the execution sequence.
At node N;
If Ejjexists; Ejj is the edge between N; and N;
M=1
Transfer Res; from N; to N;
Delete Result Res; from N;
If path Pjjexists; Pjis the path from N; to N;
M=10
Transfer Res; from N;to next node in path P;
Delete Result Res; from N;
else
MOVE cannot be executed.
At node Ng;can be intermediate node or destination node
If DestID=SelfID copy Res:.

If DestID#SelfID transfer Res; to next node in Pj

}

The COPY operation executed at a node as specified by the query plan indicates that the
result of query execution at that particular node needs to be sent to a set of other nodes.

The flag M is set to 11 and the payload contains the Result as per Figure 12.

SP|SP|D/N|IT |11]|A|Q| N: N> Timestamp | Result

Figure 12: Message sent for the COPY operation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

35

Algorithm to execute COPY

COPY (Result, Nodelist[])

{ N;: Node at which the copy operation is executed.

Nodelist []: Contains a list of nodes to which the Result needs to be copied.

At Node N;

for each node N;in Nodelist []

If Ejexists; Ejjis the edge between N;and N;

M=11

Transfer Result from N;to N;

If Pjjexists; Pjis the path between N;and N;
M=10

Transfer Res; from N;to next node in path P;

else

COPY cannot be executed for node N;

At node Ny;can be intermediate node or destination node

If DestID=SelfID copy Res;.

If DestID#SelfID transfer Res; to next node in Pj

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

36

7.1 Message exchange for adjacency list maintenance at each node

Each node to indicate its presence in the network sends periodic ALIVE message to those
not connected to it. This message is essentially a multicast message. The flag A is set to
indicate that the message is an ALIVE message. A node’s absence is determined due to the
missing ALIVE message and changes are made in the connectivity graph of each of the
neighbors.

Also, a node can voluntarily leave a network by sending a QUIT message (also multicast)
and hence changes are made in the connectivity graph of each of the neighbors. The flag Q
is set to indicate that the node is voluntarily leaving the network. A typical sequence of
message exchanges between two nodes in shown in Figure 13.

Algorithm to reconstruct the Adjacency list
RECONSTRUCT_AD]JLIST
{ At node N;
If no ALIVE message is received from Node Njor QUIT is received from N;
Remove node N; from the adjacency list of node N;
For each node Nk in the adjacency list of node N;
N=1

Send NEIGHBOR message (updated adjacency list, Meta data
information)

Sequence of message exchange between nodes in the network.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

37

Time
T=0
T=1

=1

=N

New Node

o0 009
o0 009

o0 009
o0 009

Already in the network

DISCOVER
T

NEIGHBOR

—

ALIVE

T

/
ALIVE

—

/

QUIT

—

poeoeooe
poeoeooe

poeoeooe
poeoeooe

Figure 13: Message exchange between nodes from T=0 to T=N units

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

38

eecoccocoe
DATA

0000000

7.2 Replication

Each data object is replicated on other node. In the following we discuss the criteria for choosing an
appropriate node for replication.

Assumptions:

There exists only one replica of a given data item (Tuples).

N (Source Node): The node where the original copy of data item d; exists.
N,Candidate Node): The node which contains the replica of d..

When a Source node N; decides to replicate its contents on another node N, a node from the
set of the Nodes that are immediate neighbors of the source node is selected as candidate node
for replication. Immediate neighbors are those nodes which are directly connected to the source
node. The source node tries as much to replicate all its tuples on the chosen candidate node.

For each of the above selected candidate nodes, a cost function €, is computed. The node with
the lowest cost is selected as a candidate for replication.

The cost function to determine the candidate node for replication is dependent on the following factors:

Bandwidth: Defines the closeness of N, from N; in terms of bandwidth. Greater the bandwidth more
data can be transmitted within a given time. This is advantageous when there are several tuples to be
sent across the link in a single update operation.

Link stability: This is a measure of stability of the link between nodes N; and N.. Greater stability of the
link between the two nodes implies better longevity.

The Link stability LS, measured at N;, is equal to rate of change of received signal strength for messages
sent by N.. Let r; and r;, be the received signal strength at time t; and t, respectively. (t,>t;)Current Link
stability between N; and N,, is given by,

dr
LS, = E,Where dr =r-r;and dt =t,-t;. If r;>r; then LS, is positive, this indicates increasing

link stability between Nsand N, . If r,<r; then LS, is negative, this indicates decreasing link
stability between Nsand N..

Degree of the node N, : Greater the degree of a node, better is the accessibility of replicated data.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

39

7.2.1 Cost function

When the source node N; decides to replicate its data item d; on a candidate node

Table 11: Cost function parameters maintained at each node N,

Node Average Bandwidth Average Degree
N; B; D,
N, B, D,
N; B; D;

N,, it takes into account the recent history (from the last replication decision) to make the replication
decision. History includes information about the above mentioned three factors. A simple average is
computed for each of Bandwidth and Degree. A table, such as Table 11 is maintained to store the
average values for each node the source node is connected to. Each row in the above table can be
considered as a vector of values. Each element in this vector is normalized and has a value between 0
and 1.

For each candidate node, a table is maintained to store the RSS values recorded in time. At any point in
time, the Link stability can be determined using 2 consecutive values from the Table 12. (t;<t,<t;)

Table 12: RSS values

Time Relative Signal Strength
tl rq
t; ra
ti I

Consider the following example:

Let the current value of Bandwidth between nodes N;and N, be 500 kpbs and the maximum value of
bandwidth be 1Mbps. The normalized value of bandwidth is 500kbps/1Mbps, which is equal to 0.5.
Similarly, normalization is applied to degree.

For link stability normalization is applied as follows:
If the node N, decides to replicate it’s tuples at say time t;, it takes into account the current

value of RSS r; (time t;)and the previous value ri;(time t;;) The current Link stability of the link

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

40

between N; and N, is equal to the normalized value of rate of change of RSS. Let ‘T’ be the time
period between the last replication decision and the current replication decision. The maximum
value of rate of change of RSS during ‘T’ is computed which is used in the normalization.

dr /dt

Link stability LS —d
MAX (r)
dt

The above value lies in the range [-1, 1].

Normalized link stability is given by: (LS’ +a)/B where a=1 and f=2.The normalized value has a
range [0,1].

After each parameter is normalized, a weight is associated with it. The weight is an indication of
the relative importance of a parameter with respect to other parameters in the computation of
the cost function. Let w,, wy and w, be the weights assigned for each of average bandwidth, link
stability and average degree respectively.

Hence the cost function €, to identify the most suitable node for replication is given by,
C,.=1/(wy*average bandwidth + w;*link stability + w,* average degree)

Also, wy+ w; + wy =1.

Lower the value of C; for a candidate node N, indicates it is more suitable for replication.

Weights for wy, wy;and wy: The range of values for each of wy, and w;is [0,0.4]and wy is [0,0.1].

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

41

Algorithm to replicate

A node decides to replicate its tuples after each time period ‘T".

Algorithm to Check Connectivity

CONNECTIVITY (connectivity matrix, N)

{ for each Node N; in connectivity matrix of node N
If Egjexists; Eg; is the edge between Ngand N;

Return N;

Else

Return null

Justification for the parameters used in the cost function.
The cost function is given by:
C,.=1/(wy*average bandwidth + w;*link stability + w,* average degree)

The network in this scenario is dynamic and the connectivity between nodes (physical nodes) keeps
changing very often. The above chosen parameters in the cost function are ideal to select a replica.

Bandwidth:

During the process of replication, depending on how much data the source node has acquired, the
amount of data that needs to be transferred (during a replication period) to the candidate node can be a
lot. Also, taking into consideration the dynamic nature of the network, delays in transmission can lead to
some data not being transferred to the candidate node. If the candidate node is queried (instead of the
source node) the result of the query may not be accurate due to lack of tuples necessary for carrying out
the execution of the query. Bandwidth plays an important role in transmission delay, since greater the
bandwidth more data can be transmitted on the link within less time. If the source node and the
candidate node are connected and the bandwidth between them is high, data can be replicated quickly
on the candidate node.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

42

Degree:

If the source node of a data item goes out of range (isolated) for a long period of time, any query
involving data on source node cannot be successfully executed. If a node ‘N. is connected to several
other nodes, data on ‘N./ will be available to other connected (direct or indirect) nodes for a longer
period of time. It is essential that the replica of a data item (tuples) be accessible when the actual source
of data goes out of range. If the candidate node has a low degree then the chances of it going out of
range is greater. Hence degree of a node plays an important role in the availability of data.

Link Stability:

Link stability is a measure of a source node’s connectivity with the candidate node. Greater the Link
stability between 2 nodes, the more stable is the connectivity between the two nodes. A source node
‘NS’ always replicates its data items (tuples) on a single candidate node ‘N . If the connectivity between
‘NS’ and ‘N. keeps changing very often (highly dynamic) and ‘N’ has acquired new data which it decides
to replicate on ‘N/, replicating data becomes hard and unmanageable. If the link stability between 2
nodes is high, the source node gets more time to replicate its data. When a query hits a candidate node,
it will have the most recent data (since the source node can continuously transmit the recently acquired
tuples) required for successful query execution.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

43

Example Network

B/2

Figure 14 A sample graph of 14 nodes in the system

B =1 Mbps, B/2=500Kbps, B/3=333kbps, B/4=250kbps
Plots

W,=0.4, W, =0.4, W4=0.2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

44

.w,
*
o .

wnmEm,
o e

N12

. .
AT

.
-
*as®

In the above graph if Node N1 decides at t6 to replicate its tuples on one of N2, N6 or N14, the best
node in terms of cost (lowest) is chosen for replication.

The cost calculation for each of these nodes is shown below:

Cost for replicating on node N2

Table 13 RSS Values from t1 to t5 for Node 2

tl | t2 | t3 | t4 | t5 | t6
5 7 4 8 6 5

(Maintained at N1)

Table 14 Parameter values for Node 2

Current Value

Maximum Value

Normalized value

Bandwidth 333kbps 1Mbps 0.33
Degree 2 14 0.14
Link stability -1 4 0.37

Cost = 1/ ((0.33*0.4) + (0.37*0.4) + (0.14*0.2))=1/0.30=3.33

Cost for replicating on node N6

Table 15 Parameter values for Node 6

Current Value

Maximum Value

Normalized value

Bandwidth 333kbps 1Mbps 0.33
Degree 2 14 0.14
Link stability 1 3 0.66

45

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Table 16 RSS Values from t1 to t5 for Node 6

tl t2 t3 t4 t5 t6
5 7 6 4 7 8

(Maintained at N1)

Cost = 1/ ((0.33*0.4) + (0.66*0.4) + (0.14*0.2))=1/0.42=2.35

Cost for replicating on node N14

Table 17 Parameter values for Node 14

Current Value Maximum Value Normalized value
Bandwidth 333kbps 1Mbps 0.33
Degree 1 14 0.07
Link stability -1 3 0.33

Table 18 RSS values from t1 to t6 for Node N14

tl t2 t3 t4 t5 t6
5 7 6 4 7 6

(Maintained at N1)

Cost = 1/ ((0.33*0.4) + (0.33*0.4) + (0.07*0.2))=1/0.27=3.70

Table 19: Cost for nodes N2, N6 and N14

Bandwidth Degree Link Stability Cost
Node N2 0.33 0.14 0.37 3.33
Node N6 0.33 0.14 0.66 2.35
Node N14 0.33 0.07 0.33 3.7

From the above table, Node N1 chooses node N6 as the best node for replication since the cost for

replication is lesser than the other 2 nodes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

46

7.3 Application Level mechanism for Acknowledging UDP packets

Issues with TCP over mobile wireless network: The nodes in the scenario communicate with each other

over wireless links. TCP does not scale well such wireless networks as nodes frequently disconnect and
rejoin. It will be necessary to use UDP for transfer of messages/metadata between nodes in the current
environment. However, for critical applications, reliable transfer of packets is imperative. In view of the
above, we have developed a simple mechanism for acknowledging UDP packets from the application
layer. Development of the simple mechanism was preceded by a review of existing literature on the
topic. Summaries of critiques will be provided if needed.

1. Wireless links use open air as the transmission medium and are subject to many
uncontrollable quality-affecting factors such as weather conditions, urban obstacles,
multipath interferences, large moving objects, and mobility of wireless end devices. As a
result, wireless links exhibit much higher Bit Error Rate (BERs) than wired links.

2. Limitations of radio coverage and node mobility require frequent handoffs, thus
resulting in temporal disconnections and reconnections between the communicating
end hosts during a communication session. During a disconnection both the
retransmission and ACK’s will be lost, repeated failed retransmissions results in stalling
the TCP transmission for a much longer period. (Slow start)

UDP data transfer scheme:

The User Datagram Protocol provides a procedure for application programs to send data to other
applications with minimum protocol mechanism. The protocol is transaction oriented, and delivery and
duplicate protection are not guaranteed. However UDP can be used to achieve high speed as well as
accurate results by providing an acknowledgement scheme in the application layer. Unlike the TCP
protocol where the acknowledgement is sent after each packet is sent, by using the UDP scheme the
acknowledgement for the data received can be sent only after a block of data is received. This reduces
the number of acknowledgements sent when compared to the TCP scheme hence increases the overall
speed.

The structure of a UDP frame includes:

Source Port Destination Port
Length Checksum
Data Octets

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

47

Application layer acknowledgement scheme based on UDP:

In the application layer at the sender side, an INFO message which contains information about the
number of packets and the number of tuples is sent to the receiver before the actual data is
transmitted.

The format of the INFO message is:

SP FID|N|I | M|A|Q|SourcelID | DestinationID | Timestamp | Payload

The flag F is set (F=1) to indicate that the payload contains frame related information. The payload
contains information about the number of packets that would follow (‘K’) and the number of tuples in
each of the packets (‘k’). This information lets the receiver know about the amount of data to expect
from the sender identified by the Source ID field. The receiver allocates some buffer space to
accommodate the incoming data.

After the INFO packet has been transmitted, the sender transmits the actual data. Each application layer
data packet (those which have the M flag set) contains information about the ID for the transaction and
the sequence number “Seq” of the packet being sent. The ID:Seq field for the other packets has a value
of 0 to indicate that the message contains control packets.

SP |ID:Seq |F |D|N|I |1 |A | Q | SourcelD | Destination ID Timestamp Payload

The receiver maintains 2 timers ACK and NAK which are for acknowledging and reporting loss
respectively. These indicate the frequency of acknowledgment (or NAK) in the network. If the ACK timer
expires and there are new packets to be acknowledged, the receiver sends an ACK to the sender. The
receiver maintains a loss list which maintains information about the number of packets that were lost
during transmission. If the current sequence number is greater than the largest sequence number ever
received plus 1, all the sequence numbers between these two numbers will be inserted into the
receiver’s loss list. If the NAK timer expires and the loss list at the receiver is nonempty then the receiver
sends a NAK to the sender.

On receiving a NAK, the sender retransmits the packet. Until an ACK is received the sender maintains
information about all the packets that have been sent in this session (indicated by ID) in the sender’s
ToBeACK list. On receiving acknowledgement report for a particular packet (or set of packets) from the
receiver, information about these packets is removed from the ToBeAck list.

The format of the NA packet is:

NA |ID:Seq |F |[D|N |I |M|A | Q | SourcelD | Destination ID Timestamp Payload

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

48

The field NA is set to 10 to indicate a loss report. The payload contains information about the packet
numbers not yet received. The field NA is set to 11 which indicate the acknowledgment till the last
correctly received packet.

Algorithm for sending data (at the sender):

The algorithm “Send” transmits data “Data” to the receiver “Destination ID”.

Send (Data, Destination ID) {

Send control information by setting the flag F=1 of the INFO message to the receiver.
Send data (tuples) using UDP to receiver (Destination ID)

Add the ID: Sequence number in the ToBeACK list.

On receiving an ACK, remove the Sequence number (s) from the ToBeACK list.

On receiving a NAK, retransmit the packet(s) to the receiver.

}

Algorithm for receiving data (at the receiver):

The Receive algorithm is executed at the receiver.

Receive (Data, Sender ID, Destination ID) {
After receiving the INFO message, start the ACK and NACK timer.
Receiving packet: if Sequence number > Sequence number in buffer +1
Add packet to loss list.
If NAK expires and loss list is nonempty
Send NAK report to sender
If ACK expires and there are pending acknowledgements to be sent to the Sender

Send an ACK report to the sender.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

49

8. SIMULATION STUDIES

8.1 Simulation Architecture

Technical Specifications:

Table 20 Specifications for Simulation

MODEL TECHNOLOGY
Front end JAVA AWT
Back end ORACLE 10G
Controller JDBC
Languages JAVA, PL/SQL
SDE ECLIPSE

8.1.1 Description or Setup:

A mobile Peer-to-Peer network has been set up with a maximum of 12 UAV’s. All the UAV’s are
within an area of 140 X 140 miles (area of 20,000 sg. miles) distance.

Each UAV sends a DISCOVER message as soon as it enters the network. UAV’s within the
transmission range receive this DISCOVER message and acknowledge it by sending a NEIGHBOR message
back. A links is then created between these UAV’s. UAV’s also keep sending DISCOVER message
periodically to find new UAV’s reachable.

An ALIVE message is sent periodically by all the UAV’s to indicate their presence in the network. An
ALIVE message also contains the connectivity graph of the UAV.

Bandwidth of the link is 1Mbps if both the UAV’s have only one link; it is 500kbps if at least one UAV
has 2 links and so on. The bandwidth of the link also depends on the length of the link (Distance
between UAV’s). The maximum bandwidth is 1Mbps till a distance of 30 miles and bandwidth decreases
to 180 kbps as the distance increases to 60 miles.

UAV “0” acts as the Broker node or Root node. UAV’s which have a direct link to UAV “0” are called
Level 1 nodes. The remaining UAV’s are level 2 nodes or normal nodes.

8.1.2 Links in the Network:

Each UAV tries to create a link with all other UAV’s within its area. The bandwidth then depends on
the number of links present at both the nodes. Since UAV ‘0’ is a root node, we allow only 3 connections
for UAV ‘0’. All other UAV’s can have any no. of links.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

50

8.1.3 Movement of UAV’s
The speed of all the UAV’s is set to 100 nautical miles/hour.
Random Way point Model: UAV’s move around within the area randomly. Random Way Point model has

been implemented for the movement of UAV’s. As the UAV’s move, bandwidth of the links change
based on the distance between them. Also links are broken and new links formed based on the distance.
UAV’s may not move always. Sometimes they stay at fixed position and this also has been simulated.

Fixed Trajectory: Each UAV is assigned a fixed path when it is created. UAV’s can be asked to move in

this path. Fixed path trajectory has been implemented for it. The speed for this fixed trajectory is also
the same. UAV’s either move randomly or along the path fixed. Both of them are not possible at
the same time.

Circular movement of UAVs: On addition to the fixed path trajectory having a polygon of any random

shape, we have incorporated the circular fixed path trajectory also. The current system has both circular
path fixed trajectory and polygon shaped fixed path trajectory. The trajectory can be viewed in the
simulation environment by entering the node label in the text box beside show path and clicking show
path.

8.1.4 Routing Algorithm

Since the number of UAV’s are less, a two layer routing protocol has been implemented. For this
each UAV broadcasts information about its neighbors and the distance between them (i.e. each UAV
broadcasts its neighbor table). This is done by sending an ALIVE message periodically.

Using all the received ALIVE messages, each UAV has an overview of the graph (length of edges and
UAV’s) in the first layer. The graph is stored in the memory of the UAV and is updated as soon as ALIVE
messages are received. So each UAV has the most recent possible graph structure.

To also reduce the time taken to find a route between UAV’s, each UAV finds a route to all other
UAV’s and stores it in the second layer. These routes are found from the graph in the first layer using
Dijkstra’s algorithm.

Whenever an existing link is broken, the UAV’s involved send an ALIVE message again. This is done
to update the graph structure at every UAV. UAV’s can then decide whether to find a route again or to
use an existing one.

When a new link is formed, the UAV’s do not broadcast data about the new link. This is because as
soon as the time period expires each UAV broadcasts an ALIVE message again, so the new link
information is also broadcasted. Since we are not sure if this link will help decrease the cost incurred by
a considerable level, we wait for the timer to expire rather than broadcasting about the new link again.

8.1.5 Orientation

We have each UAV rotating at four specific angles (0, TT/2, TI, 2TT). We assume that each UAV
will be rotating to any one of these angles for every one minute. We then reduce the initial available
bandwidth based on distance by subtracting it with a reduction factor. The reduction factor depends on
the orientation of the UAV’s, there are 16 such cases for four angles as discussed in the Table 21 below.
We are categorizing UAV’s as UAV1and UAV2 based on their location in the simulation area.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

51

Let UAV (v), UAV (w) be any two UAV’s.
Case 1: If (X axis value of UAV (v) > X axis value of UAV (w)) UAV1 = UAV (w) & UAV2= UAV (v)

Else UAV1 = UAV (v) & UAV2= UAV (w); Shown in Figure 15.
Case 2: If (Y axis value of UAV (v) > Y axis value of UAV (w)) UAV1 = UAV (w) & UAV2= UAV (v)

Else UAV1 = UAV (v) &UAV2= UAV (w); Shown in Figure 16.
The ideology of using case 1 is to determine the left and right UAV’s in the simulation area. Casel
ensures that UAV1 will be always to the left of UAV2.

r'y

X axis of UAV1 < X axis of UAV2

L J

' 1
-
-

Figure 15 Relative positions of UAVs: Case 1

There are cases in which the X axis of the UAV might be the same, i.e.) they might be lying in the same
vertical axis. Hence, we have case 2 determining top and bottom UAV’s in the simulation area. Case 2

ensures that UAV1 is always to the bottom of UAV2.

Y axis of UAV2

‘ N Y axis of UAV1
|
|

X axis of UAV1 & UAV2

L J

F Y

Figure 16 Relative positions of UAVs: Case 2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

52

Table 21 Reduction factors for the two UAVs

NO UAV1 UAV2 REDUCTION FACTOR REDUCTION FACTOR
Case 1 Case 2

1 0 0 5k 5k

2 171/2 0 6k Bk

3 T 0 7k Ak

4 371/2 0 6k 6k

5 0 T1/2 3k 6k

6 171/2 T1/2 5k 5k

7 T T1/2 6k 6k

8 317/2 T1/2 4k 7k

9 0 T 0 Ak

10 11/2 T 3k 3k

11 T T 5k 5k

12 371/2 T 3k 6k

13 0 3T1/2 3k 3k

14 11/2 3T1/2 4k 0

15 T 3T1/2 6k 3k

16 317/2 311/2 5k 5k

Constant

Bandwidth after orientation=0Original Bandwidth - Reduction Factor

The reduction factor is designed by assuming the antenna to be in front of the UAV’s. For e.g., in row
number 9 of case 1, UAV1 is O degree and UAV2 is 180 degree, since both UAV’s are facing each other it

will get the maximum bandwidth, as shown below in Figure 17.

180

20
'

360

L J

180

90

-~

rF

Figure 17 UAVs facing each other

v 360

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

53

L J

Whereas, if we consider row number 3 of case 1, UAV1 is 180 degree and UAV2 is at O degree; both
UAV’s are facing opposite to each other as shown below, hence this event bears the highest reduction
factor.

0
90

180
0 180 0
.| N

L 4
' 3
¥

360

v 360

Figure 18 UAVs facing in opposite directions

8.2 NETWORK CONFIGURATION & MESSAGE PROTOCOL

8.2.1 ASSUMPTION

All UAV’s (also called as nodes here) are homogenous and they each carry a device that has
capabilities similar to a laptop and that has support for wireless communication. The number of nodes
ranges from 10-16. The message format for the various messages exchanged is similar and it contains
multiple flags to indicate the type of data being sent in the payload. The address of each UAV is of length
5 bits and it is unique to each UAV.

Msg. Id D A L| M| S Source ID Destination ID Timestamp Payload

D-Discover

A-Alive

L-Link

M-Message/Data

S-Status

Spare Flags, reserved for future use

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

54

8.2.2 SETUP
Initially there is a single node that exists in the network.
At say time T=t1 there is a node which comes into the range. The new node sends a neighbor discovery
DISCOVER message. The DISCOVER message contains
e The source identifier (ID).
e The destination ID is typically a Broadcast address.
e ATimestamp.
o Alist of data it contains.
e The Flag D when set indicates that the payload contains information about the data on that
node.
If the node is the only one in the network for the current time slot, it sends up to ‘N’ neighbor DISCOVER
messages and decides that it is the only one in the network. The DISCOVER messages are sent
periodically to gain new connections. Say at time T=t2, there are other nodes which come into the
range. Each of these nodes send a similar DISCOVER message. When an already existing node receives a
DISCOVER message, if the node is within a distance of 40 miles and if it has free channels available, it
responds with an acknowledgement. A node does this by sending an ALIVE message. The ALIVE message
contains:
e The source identifier (ID).
e The destination ID (which has previously sent the DISCOVER message).
e The connectivity graph / Adjacency matrix.
e The Flag A when set indicates that the payload contains information about the nodes
connectivity.
If all the nodes in the network have 3 connections (i.e. if all the channels are taken up), one node is
chosen to form a link. This node is found from the set of nodes within a distance of 30 miles from the
node sending DISCOVER message. Nodes farther than 30 miles do not reply to the DISCOVER message.
The selected node breaks an existing link by sending a LINK message. It then replies with an ALIVE
message to the node sending DISCOVER message. The LINK message contains:
e The source identifier (ID).
e The destination ID (the node to which link is broken)
e ATimestamp
e Flag Lis set.
If a node is many hops away from any node, LINK message can also be used to break an existing link and
create a new link. This is done so that a least used link is broken and a link is created between nodes
which are many hops away. The least used link is found from the routing table. Weight is assigned to
each link based on the number of nodes it can reach using that link. The link with least weight is broken
to create a new link.
If the node receiving LINK message has a link with the source, that link is broken. If the node
receiving LINK message does not have any link with source and if the nodes are within a distance of 30
miles, a new link is created with the source. A new link is acknowledged by sending an ALIVE message

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

55

back. After this initial setup phase each node in the network has information about both the
connectivity as well as the data that each of its neighbors nodes possess. The connectivity information
helps in routing. Routing is required for those nodes which want to send data to other nodes which are
not directly connected.

8.2.3 CONSTRUCTION OF GN

Each node broadcasts a ALIVE message periodically. This ALIVE message also contains the
neighbor table like structure for each node. This table contains the nodes it can connect to and the
distance to each of them.

Figure 19 Graph representing 4 nodes

From Figure 19, information broadcasted by node 1 is:

1 0 Distance between0Oand1
1 2 Distance between 1 and 2
1 3 Distance between1and3

Each node broadcasts such information to the whole network using the links. An adjacency matrix with
the distance is created at every node from this information. This adjacency matrix is used to find the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

56

shortest route to the nodes in the network. The shortest route is found using Dijkstra’s algorithm on the
adjacency matrix. At any point of time, there are 18 links in the network with 12 nodes. So the amount
of link information sent is 18 lines. The routing table thus formed is used to find the least used link and
also to check the connectivity in the network. The routing table for a network is stored in the following
format in Table 22.

Table 22 Routing table

Routing Table for 2 :
2470
2111

243
24
2475
26
247
2438
2119
24710
211

Row 0 shows the shortest route from node 2 to node 0.

Row 1 shows the shortest route from node 2 to node 1 and so on.

If any row is empty, then the node is not able to reach that node. It tries to connect to that node by
sending LINK message to that node.

If the no. of hops to any node is more, (for e. g., if the 10™ row is 2 4 7 0 1 10--- six hops) node 2 tries to
establish a direct connection with node 10 if it is within reachable distance. The link to be broken is
decided based on the weights. The weights of the links are:

Link 2-4 ---7
Link 2-6 ---1
Link 2-11--- 3

Since the link 2-6 has less weight, this link is broken to form a new link with 10.

Each node to indicate its presence in the network sends periodic ALIVE message to those who are
connected to it. This message is essentially a broadcast message. This helps in maintaining the updated
distances and bandwidth of the links. With this algorithm, information about all the links is known to all
the nodes in the network. This helps in finding the best shortest path in the network. In the previous
algorithm, the information is only shared with the neighbors. The neighbors then share this information
in the next cycle. This increases the time to update the table at the other end of the network. This
network can also change by the time information reaches other end. Using this mechanism, the updated
information is known to all the nodes and helps in finding the best route every time.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

57

8.2.4 RECONSTRUCTION OF GN

If no ALIVE message is received from a node, that node is considered to be disconnected. The
neighboring nodes then broadcast the routing table again and also broadcast a DISCOVER message.
DISCOVER message is broadcasted because there is free channel available.

Whenever an ALIVE message is received by any node, the distance between the nodes is
updated and the shortest route to every node is found again.

8.2.5 GRAPH MAINTENANCE

Graph structure of the network is maintained by storing the distance between the nodes. This
distance is updated whenever a ALIVE message is received. The ALIVE message is broadcasted under
these conditions:

1. When acknowledging a new link

2. Periodically to update the distance between nodes.

3. Whenever a link is deleted from the network.

8.3 METADATA GENERATION

The metadata information is stored at each node. Every node will broadcast its MIO
information. Every other node computes the metadata information for data present at other nodes
using the received MIO information. The metadata information metrics are cardinality, Width, Min value
and Max value. These metrics are used for computing cost during query plan generation. The metadata
table with metadata information metrics is shown in Table 23.

We are using Triggers to update the metadata metrics, when new data are inserted into the MIO table.

Object Node ID Size Object Latitude Longitude Time Received
Type Description Stamp Time Stamp

MIO TABLE ATTRIBUTES

Table23: METADATA TABLE

Name Type card | width [Min value | Max value Range

(unique values)

Object Type Rel

Size number

Object Description | Varchar

Latitude number
Longitude number
Time Stamp Varchar

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

58

8.4 REPLICATION

There exists only one replica of any data item prevailing in the system. We have the
source node containing the original data item and one of the candidate nodes containing the replica.
The candidate nodes are one hop neighbors of the source node; hence replication is restricted to one
hop. Each node will have many candidate nodes; hence the choice of replicating a data item at a
candidate node is based on a cost function comprising Bandwidth, Link Stability and Degree of Node.

W, W, W, € Weights assigned for bandwidth, link stability and degree of node.
Cost;, .= 1(W,*average bandwidth + W* link stability + Wy * average degree)

Once a node replicates its data to one of its neighbors, it places the replica information in the replication
mapping table. The replication mapping table will be maintained at each node. The replication mapping
table contains information about name of the data item being replicated, original node and the
replicated node.

8.5 STATIC QUERY PLAN EXECUTION

On an environment at which partial meta-data is broadcasted, i.e. Meta data containing only
data_desc and source information, we have static query plans to evaluate queries requiring other meta-
data information such as latitude, longitude etc. A query plan is a numbered sequence of steps that can
be easily interpreted and executed at any node as shown below.

Operation 1 Param | Operandl | Operandl | Operand2 | Operand 2 | Result Result
Loc Location Name Loc

Operation 2 Param | Operandl | Operandl | Operandl Operand2 Result Result
Loc Loc Name Loc

Operation n Param | Operandl | Operandl | Operandl | Operand2 Result Result
Loc Loc Name Loc

The query execution proceeds as follows. The plan is sent to the node in which the first operation takes
place. The interpreter in that node uses the plan counter to execute as many steps as possible in that
node. When a move is encountered, it sends the meta-data results as well as the plan to the node
mentioned in Result Loc of the plan. This process continues until the last step of the plan is executed.
The final node containing meta-data result retrieves the needed Data either from replica or original
node.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

59

We have the following set of operations SELECT, MOVE and JOIN; Param indicates the condition for

select and join operations. Operandl & Operand2 are variables used for join operation. The result of

select and join operation are placed in the Result Name variable.

“SELECT * FROM UAV1 R;, UAV2 R, UAV3 Rs WHERE R;.timestamp LIKE k AND R,.timestamp LIKE j AND
R3.0bj_type="1" AND R;.latitude>R,.latitude AND R,.longitude>Rs.longitude”
k, j € Input timestamps given by the user.

The query plan for the above query is shown in the table 24. The query plan is given to node 0 by

default, which follows execution as per the plan.

Table 24: Query plan

Operation Sub SQL & JOINS Operandl Operandl Operand 2 | Operand 2 | Result | Result
Loc Loc Name | Loc
Select SELECT LATITUDE | Ry 1 Null Null Ry 1
FROM UAV1 WHERE
TIME_STAMP LIKE k
Move Null R 1 Null Null R 2
Select SELECT R, 2 Null Null R, 2
LATITUDE,LONGITU
DE FROM UAV2
WHERE
TIME_STAMP LIKE j
Join Latitude > Latitude Ri2 2 R, 2 N} 2
Move Null A1 2 Null Null J12 3
Select SELECT * FROM | Rs3 3 Null Null Rs 3
UAV3 WHERE
OBJ_TYPE=1
Join Longitude > Rs 3 Jio 3 J2 3
Longitude
Move Null J2 3 Null Null Ja7 7

We also simulated query plans for the following scenarios.

1. Get all information from UAV taken within last five minutes of the area bounded by latitudel,
longitudel and latitude2, longitude2.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

60

Query:

SELECT * FROM UAV1 R, UAV2 R, WHERE R;timestamp >time AND R,.timestamp < time AND
Ri.timestamp > time AND R,timestamp < time AND R.latitude>R,.latitude AND
R;.longitude>R,.longitude

Query Plan:
Operation | Sub SQL& JOINS Operandl | Operandl | Operand 2 | Operand 2 | Result | Result
Loc Loc Name | Loc
Select SELECT * FROM UAV1 R1 | R; 1 Null Null Ru 1
WHERE R1.time_stamp
>to_date('08-dec-2010
09:41:30
PM','dd/mm/yyyyhh:mi:ss PM')
AND R1ltime_stamp <
to_date('08-dec-2010 09:41:32
PM','dd/mm/yyyyhh:mi:ss PM)
Move Null Ru 1 Null Null Ru 2
Select SELECT * FROM UAV2 R2 | R, 2 Null Null Ra1 2
WHERE R2.time_stamp
>to_date('08-dec-2010
09:41:30
PM','dd/mm/yyyyhh:mi:ss PM")
AND R2.time_stamp <
to_date('08-dec-2010 09:41:32
PM','dd/mm/yyyyhh:mi:ss PM)
Join Latitude> Latitude and | Ru 2 R 2 Ji 2
Longitude > Longitude
Move Null Ji 2 Null Null Ji 3

The date given in the query and query plan are sample dates, our simulation run with respect to current
time. It retrieves data taken by UAVs since last 5 minutes.

2. Get all images taken within last five minutes of the area bounded by latitudel, longitudel and
latitude2, longitude2 within 2 NM, 3NM.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

61

Query:

SELECT * FROM UAV1 R;, UAV2 R, WHERE R;.timestamp >11/3/2010 AND R,.timestamp >11-3-2010
AND R;.timestamp <12/1/2010 AND R,.timestamp >12-1-2010 AND R;.latitude>2 AND R;.longitude>2
and R;,.longitude>3 AND R,.longitude>3 and R1.0BJ_TYPE=1 AND R2.0BJ_TYPE=1

Query Plan:

Operation

Sub SQL& JOINS

Operandl

Operandl | Operand 2
Loc Loc

Operand 2

Result
Name

Result
Loc

Select

SELECT * FROM UAV1 R1
WHERE R1.time_stamp
>to_date('08-dec-2010
09:41:30
PM','dd/mm/yyyyhh:mi:ss PM’)
AND Rltime_stamp <
to_date('08-dec-2010 09:41:32
PM','dd/mm/yyyyhh:mi:ss PM)
And Rllatitude>2 AND
R1.longitude>3

And

R1.0bj type=1

R:

1 Null Null

Ru1

1

Move

Null

Ru

1 Null Null

Ru

Select

SELECT * FROM UAV2 R2
WHERE R2.time_stamp
>to_date('08-dec-2010
09:41:30
PM''dd/mm/yyyyhh:mi:ss PM')
AND R2time_stamp <
to_date('08-dec-2010 09:41:32
PM','dd/mm/yyyyhh:mi:ss PM’)
And R2.latitude>2 AND
R2.longitude>3

And

R2.0bj type=1

R>

2 Null Null

UNION

Us

Move

Null

Us

2 Null Null

Us

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

62

3. Get all “Data” locations within 12 NM of the area bounded by latitudel, longitudel and latitude2,

longitude2.

Query:

SELECT UAVl.latitude, UAV2.latitude, UAV1.longitude, UAV2. Longitude FROM UAV1 R, UAV2 R,
WHERE R;.latitude>12 AND R,.latitude> 12 AND R;.longitude>12 AND R,.longitude>12 AND
R1.0BJ_DESC="Data” and R2.0BJ_DESC="Data”

Query Plan:
Operation | Sub SQL& JOINS Operand1 Operandl | Operand2 | Operand 2 | Result | Result
Loc Loc Name | Loc
Select SELECT * FROM | Ry 1 Null Null Ru 1
UAV1 R1 WHERE
R1latitude>12 ~ AND
R1.longitude>12
And
R1.0BJ_DESC="Data”"
Move Null Ru1 1 Null Null Ru1 2
Select SELECT * FROM UAV2 | R, 2 Null Null Ra 2
R2 WHERE
R2.latitude>12 ~ AND
R2.longitude>12
And
R2.0BJ_DESC="Data”"
Union R 2 Ry 2 Ug 2
Project Latitude, Longitude Ui 2 Null Null P1 2
Move P1 2 Py 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

63

4. Get all “Image” locations within 2 NM of the area bounded by latitudel, longitudel and latitude2,

longitude?2.

Query:

SELECT UAVl.latitude, UAV2.latitude, UAV1.longitude, UAV2. Longitude FROM UAV1 R, UAV2 R,
WHERE Ri.latitude>2 AND R,.latitude> 2 AND R;longitude>2 AND R,.longitude>2 AND
R1.0BJ _DESC="Image” and R2.0BJ_DESC="Image”

Query Plan:
Operation | Sub SQL& JOINS Operandl | Operandl Operand 2 | Operand 2 | Result | Result
Loc Loc Name | Loc
Select SELECT * FROM UAV1 | Ry 1 Null Null Ru 1
R1 WHERE
R1.latitude>2 AND
R1.longitude>2
And
R1.0BJ _DESC="Image”
Move Null R11 1 Null Null Ri1 2
Select SELECT * FROM UAV2 | R, 2 Null Null Ra1 2
R2 WHERE
R2.latitude>2 AND
R2.longitude>2
And
R2.0BJ_DESC="Image”
Union Ry 2 R 2 Up 2
Project Latitude, Longitude Ui 2 Null Null P1 2
Move Py 2 Py 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

64

5. Get the latitude, longitude, and elevation for any object of type rocket launcher in the area bounded
by latitudel, longitudel and latitude2, longitude2.

Query:
SELECT UAVl.latitude, UAV2.latitude, UAV1.longitude, UAV2. Longitude FROM UAV1 R, UAV2 R,
WHERE R;.latitude>R;.latitude AND R;.longitude>R,.longitude

Query Plan:
Operation | Sub SQL& JOINS Operandl | Operandl Operand2 | Operand 2 | Result | Result
Loc Loc Name Loc

Select SELECT * FROM UAV1 | R; 1 Null Null Ri1 1
R1

Move Null R 1 Null Null Ry 2

Select SELECT * FROM UAV2 | R; 2 Null Null R 2
R2

Join Latitude> Latitude and | R 2 Ra1 2 N 2
Longitude > Longitude

Project Latitude, Longitude J1 2 - - Py

Move Null Ps 2 Null Null P: 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

65

6. Get the current ceiling and visibility in the area bounded by latitudel, longitudel and latitude2,
longitude2.

Query:

SELECT UAV1.0obj_desc, UAV2.0bj_desc FROM

Ri.longitude>R,.longitude

UAV1 R;, UAV2 R, WHERE R,.latitude>R,.latitude AND

Query Plan:
Operation | Sub SQL& JOINS Operandl | Operandl Operand 2 | Operand 2 | Result | Result
Loc Loc Name | Loc

Select SELECT * FROM UAV1 | Ry 1 Null Null Ru1 1
R1

Move Null Ry 1 Null Null Ry 2

Select SELECT R2 2 Null Null Ra1 2
* FROM UAV2 R2

Join Latitude> Latitude and | Ry 2 Rt 2 J1 2
Longitude > Longitude

Project OBJ_DESC J1 2 - P1

Move Null P1 2 Null Null P1 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

66

7. Get all forward blue force positions within 2 NM of the area bounded by latitudel, longitudel and
latitude2, longitude2.

Query:

SELECT UAVl.latitude, UAV2.latitude, UAV1.longitude, UAV2. Longitude FROM UAV1 R, UAV2 R,
WHERE R,.latitude>R,.latitude AND R;.longitude>R,.longitude AND R1.0BJ DESC="blue force” and

R2.0BJ_DESC="blue force”

AND R.latitude>2 AND R,.latitude> 2 AND R;longitude>2 AND

R,.longitude>2
Query Plan:
Operation | Sub SQL& JOINS Operandl | Operandl | Operand2 | Operand 2 | Result | Result
Loc Loc Name Loc
Select SELECT * FROM UAV1R1 | Ry 1 Null Null R11 1
WHERE
R1.latitude>2 AND
R1.longitude>2
And
R1.0BJ DESC="Image"
Move Null Ri1 1 Null Null Ri1 2
Select SELECT * FROM UAV2 R2 | R, 2 Null Null Ro1 2
WHERE
R2.latitude>2 AND
R2.longitude>2
And
R2.0BJ DESC="Image"
UNION Ru 2 Ro1 2 U, 2
Project Latitude, Longitude U1l 2 - P:
Move Null P; 2 Null Null P; 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

67

8. Asample query depicting three joins.

Query:

“SELECT * FROM UAV1 R;, UAV2 R, UAV3 R; UAVO R, WHERE R;.timestamp LIKE k AND R,.timestamp
LIKE j AND Rs3.0bj_type="1" AND R;.latitude>R,.latitude AND R,.longitude> Rs.longitude and
Ro.latitude>R;.latitude

Query Plan:
Operation Sub SQL & JOINS Operan | Operandl | Operand2 | Operand 2 Loc | Result | Result
dl Loc Name Loc
Select SELECT * FROM | R1 1 Null Null R11 1
UAV1 WHERE
TIME_STAMP LIKE k
Move Null R11 1 Null Null R11 2
Select SELECT * FROM | R2 2 Null Null R21 2
UAV2 WHERE
TIME_STAMP LIKE j
Join Latitude > Latitude R11 2 R21 2 J1 2
Move Null J1 2 Null Null J1 3
Select SELECT * FROM | R3 3 Null Null R31 3
UAV3 WHERE
OBJ TYPE=1
Join Longitude > J1 3 R31 3 J2 3
Longitude
Move Null J2 3 Null Null J2 0
Select SELECT * from | RO 0 Null Null RO1 0
UAVO WHERE
OBJ_TYPE=1
Join Latitude>Latitude J2 0 RO1 0 J3 0

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

68

8.6 SIMULATION RESULTS

Simulations are done considering a network of 12 UAVs in an area of 140 X 140 NM?. Our performance

metrics include 1) Average connectivity & Average Reach-ability for routing, 2) Average roundtrip time,
Average hop count and Replica hit% for Replication and 3) Average Query execution time for analyzing the

behavior of move and join operations in static query plans with respect to our architecture.

Simulation Environment: \We have built a simulation environment in JAVA applet and have used Databases

for UAV memory. The simulation parameters are listed as follows

Parameter Default Value Range

Simulation Area 140 X 140 NM? 140X140 - 245X245NM?
Database size n 50 10-50

Data size 1MB

Number of nodes 12

Bandwidth 1Mbps

Transmission Range 300 meters

Velocity .8 NM/second .8-2.4 NM/second
Query generation time 1 second

8.6.1 ROUTING
We did the following experiments to evaluate routing with respect to the current simulation
system
a) Mobility VS Average Reach-ability.
b) % increase in simulation area VS Average Reach-ability
c) Time period of alive messages VS % Path Efficiency
d) Mobility Vs Average Connectivity

a) Mobility VS Average Reach-ability:

The first experiment is to find the average number of UAV reachable in the network. Reach-
ability is an important performance metric, which helps to analyze the success of UAV’s contacting other
UAV’s for data. The availability of data in the network decreases proportionally with decrease in average
reach-ability. We compute the average reach-ability as follows
Average Reach-ability = Sum of nodes reachable from all nodes / Total no of nodes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

69

The reach-ability changes with respect to change in network topology. In this experiment we calculate
reach-ability at various time intervals with a different network topology to identify at most reach-ability
for maximum number of UAVs (12) at various speeds. Every interval on x-axis constitutes average reach-
ability computed every 20 seconds. Thus, this experiment is done for 100 different network topologies.
On average, the reach-ability decreases with increase in speed, with maximum reach-ability of 9.8 is
achieved at a speed of .8 nautical miles /second (equivalent to .92 miles/second).

The 95% confidence interval for each samples across the x axis are shown as follows

Speed\Interval | 1 2 3 4 5

.8 NM 10.8+.4 1140 1140 11+0 | 9.8%.6
1.6 NM 9+1.2 9.6 +.6 9+1.2 8+1.8 | 8.7+2.1
2.4 NM 712 | 7.2+1.6 | 6.7+1.8 | 5.4+1.8 | 7.3t1.8
Speed\Interval | 6 7 8 9 10

.8 NM 11+0 9+1.1 10+.7 710 | 7.4+8
1.6 NM 6.6+2.1 | 10.6+.5 | 9.7+1.7 | 10.6%.5 9.8+1
2.4 NM 611.3 7+1.7 | 7.9%£1.8 7+2.0 | 6.3+2.4

b) % increase in simulation area VS Average Reach-ability

We evaluated Average Reach-ability with respect to simulation area. We increased the simulation
area in terms of 25%, 50% and 75%.We have initial simulation area of 140X140 NM. We increased

a) 25% = 175X175 NM

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

70

b) 50% =210X210 NM

c) 75% = 245X245 NM
The Average reach-ability decreases with increase in area size. This is due to the wider placement of
UAVs in larger areas, which causes too many disconnections forming isolated UAVs. The results are
plotted and graph is shown as follows

12 4

10

oo

Average Reachability

a T T T 1

5 . . .
% increase in simulation area

The 95% confidence interval for samples across x axis are shown as follows

% increase in simulation area

0 25% 50% 75%

11+.0 | 8.2+¥1.6 | 7.2¥1.9 | 6.8+2.1

c) Time period of Alive messages vs % Path efficiency:

In this experiment, we try to find the best time-period to broadcast ALIVE messages. ALIVE messages
contain the updated link information, which is used to reconstruct the routing table. The time interval in
which the alive messages are sent should be optimal, such that the available path to send data is valid
and also the shortest path to the destination. We evaluate the %path efficiency for different movement
models sending alive messages at various time intervals between 10 and 60 seconds for 12 UAV’s. We
determine the path efficiency of the routing table based on the formula below:

% Path Efficiency= (no. of valid and shortest paths in routing table/ Total no. of paths) * 100
The topology change varies with respect to speed, hence we evaluate with respect to speed. The delay
in ALIVE messages increases the delay in updates, which causes the construction of erroneous routing
table; hence there is a decrease in efficiency with increase in time interval of alive messages.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

71

100% -

P w- % Path Efficiency &
E as% 4 s NM/second
E‘ 96% —#— % Path Efficiency 1.6
E NM/second
g
£ 94% A ----6---- % Path Efficiency 2.4
F NM/secand
= 0% -
g
-
= J
H 00%
2
£ gew-
L)
n I\|
£ BE% eraeeeamans o
84%

' Time period of alive

10 20 30 40 50 60
message (seconds)

At 10 & 20 seconds interval, updates are fast, hence the path in the routing table are almost
valid bringing high efficiency irrespective of speed. At high mobility (1.6 & 2.2 miles/second), network
topology changes rapidly and updates are also slow at 50 & 60 seconds. Hence, the path efficiency is
very less as compared to path efficiency at .8 miles/second. We conclude that 30 seconds as ideal Alive
message broadcast time since broadcast at reduced time interval cause too much congestion in
network. Moreover, efficiency at 30 seconds is upright, i.e. the difference between path efficiencies at
various speed is not that high.

The 95% confidence intervals of the plotted samples are shown as follows

Time period of Alive messages

10 20 30 40 50 60
.8 97.9+.9 96+3.8 95.313.4 94+5.9 9315.8 92.416
1.6 96.3t24 | 95+3.1 94.1+3.6 91+4.4 8716.4 87.213

2.4 | 95.61£2.1 94.8+2.1 92.2+5.3 91+4.7 8615.9 85.615

d) Mobility VS Average Connectivity:

With respect to connections, we are restricting the connections for “UAV 0” to 3; the remaining
UAV’s can have as many connections depending on the numbers of UAV lying within their transmission
range.

Average Connectivity=Total no. of connections for each node/Total no. of nodes
The connectivity changes with respect to change in network topology. In this experiment we calculate

connectivity at various time intervals with a different network topology to identify at most connectivity

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

72

for maximum number of UAVs (12) at various speeds. Every interval on x-axis constitutes average
connectivity computed every 20 seconds. Thus, this experiment is done for 100 different network
topologies.

b
£ o

M Average Connectivity
H Speed .8 NM/second

w

n = in r n ow in

OAverage Connectivity
Speed 1.6 NM/second

ra

o

O Average Connectivity
Speed 2.4 NM/second

Average Connectivity

[=1

[=1
[
[
[
[
!

1 2 3 4 5 6 7 g o 19 Timeperiodofalive
messages

The average connectivity decreases with increase in speed, it is obvious that high mobility causes too
many disconnections decreasing the connectivity. The connectivity at 0.8 NM/second mobility is
maximum with an average of 3.98, which means for 12 UAVs every UAV has degree 4 as an average at
.8NM/second.

The 95% confidence interval for the samples are shown as follows

Speed\interval | 1 2 3 4 5

8 NM 3.8+.26 | 3.8+.26 440 | 4.2+.26 410
1.6 NM 2.8+.39 | 3.3+41 | 3.7+83 | 4.1+.20 | 3.2+.39
24NM 2.7+29 | 1.9+20 | 2.2+40 | 3.5+.33 | 2.8+.26
Speed\interval | 6 7 8 9 10

.8 NM 44+32 | 41+19 | 3.4+.32 | 41+.35 440
1.6 NM 3.3+.41 | 34+.32 | 3.9£.35 | 3.8+.39 | 2.9+.73
2.4NM 3.3+.71 | 3.3+41 | 3.2£.39 | 3.7£.65 | 2.5+.43

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

73

8.6.2 REPLICATION

We have two access models for validating the replication scheme.
1) Access based on Load balancing Score Function:(ABL)
n

Scorey = [(Siz€pata / BWmin) + hopcount-1] + 3 LWi * P
i=0
Sizepas € Size of the requested data item.
BW in < Minimum bandwidth across the path between source to destination.
LW; € Load Weight at node i, higher the load causes more time for query to get
Processed.
P; é{ 4 N is the destination (or) IS
1 N is Intermediate

IS& refers to the intermediate data source, which lies at a shorter distance along the path to
another data source for the same data.

With respect to above replication scheme, there will be two copies for any data item, request will be
send to UAV having a lesser Scorey. We apply random load weights at each node; our load weight varies
between 1 to 3. We have kept the delay due to single load as 10 milliseconds

1l) Access based on reduced hop count: (ABR)
Request will be send to UAV, which can be reached through lesser number of hops from source UAV.
We did the following set of experiments to validate replication scheme
a) Number of data items VS Average hop count.
b) Number of data items VS Average roundtrip time.
¢) Number of data items VS Cache hit ratio.

a) Number of data items VS Average hop count
Average hop count is one of the ideal performance metrics, which helps to analyze the
efficacy of data access due to replication.
Average hop count= Y% Hi/ N,
Ng € number of queries
H; € hop count to reach the destination
We validate Average hop count with respect to the two access models (ABL & ABR). We measure
the average hop count by varying the number of data items from 10 to 50. We follow ZIP-f distribution
based query access with K=15 and a=0.8. The number of queries increases exponentially with increase in
number of data items. We execute the average hop count formula for each case and the results are
plotted as follows.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

74

€18 -
3
S
g_1.8 .
ﬁ 17 4 e Arcess basedon
oo reduced hops
L 16 - .
E ey —+&— Accessbasedon
15 A i, e Load Balancing
-I-l'-. an® - et
14 - Tt
1.3 A
1.2
10 20 30 40 50

Noof Data Items

ABR favors hop count; hence the average hop count is less compared to ABL for all the cases.
ABL favors response time. Though ABL has hop count in its equation, distant source might be chosen
based on reduced load across the path and lesser estimated response time. ABR never cares about load
or response time and considers only hop count. Hence, ABR provides better hop count as compared to
ABL.

The 95 % confidence interval for samples in x axis is as follows

No of Data items

10 20 30 40 50

ABL | 1.74+.18 1.7+.14 | 1.7+25 | 1.83+.2 | 1.9+.18

ABR | 1.49+.17 | 1.39+.09 | 1.48+.11 | 1.45+.09 | 1.57+.15

b) Number of data items VS Average Round trip time

Average Roundtrip time is also one another performance metric determining the efficacy of data
access. This performance metric too, is highly dependent on the access models (ABL & ABR).
Average Round trip time= (1/N,) * Z?,:ql(Tr —Trs)

Ng € number of queries

T, €time stamp in which request is send.

T,s € time stamp in which the first initial response is received.

We measure the average round trip time by varying the number of data items from 10 to 50. We
follow ZIP-f distribution based query access with K=15 and a=0.8. We execute the average roundtrip
time formula for each case and the results are plotted. ABR has better roundtrip time since it chooses
data from nodes at shorter distance; the first part of ABL score function chooses source from which data
can be retrieved at a shorter response time. But in case of roundtrip time, we consider only the first

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

75

initial response. Since ABL has increased hop count, the delay due to load across the path is high as
compared to ABR. Since average hop count gives preference to shorter hops, the load is very less and
the delay to get first initial response is less. Thus, the average roundtrip time of ABR is less as compared
to ABL.

< 200 -
E
o 180 - T
o G~
P 160 -
= e J—
E 140 - 1_1 e ------- Arcess based on
u Reduced haps
E 120 -
o —+&— Accessbasedon
S 100 - Load balancing
T
5
a 20
o
g‘u 60
o
a 40
=
<1

20

10 20 30 40 30 Noof Data items

The 95% confidence interval for samples is as follows

No of Data items

10 20 30 40 50

ABL | 171.4+32.8 | 174.2+27 | 172.2+27 | 183.3+29.6 | 182.8+18.9

ABR | 139.8+23.1 | 135.2+8 | 154.4+13 | 141.3+15.4 | 151.6+24.1

c) Number of data items Vs Cache hit ratio:

In this experiment, we try to find effectiveness of the replication algorithm. We analyzed the
replica hit %, by varying the number of data items from 10 to 50. The formula is given below:
Replica Data hit % = No of replica hits/ N,.
Ny € number of queries

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

76

o
(=)

L
(=]

=
o

B Replica hit

| reduced hops
Replica hit Load
] balancing
10 20 30 40 5

W
(=]

[
(=)

[y
(=]

(=]

Replica hit ratio % for access based onreduced hops

0

No of Data items

ABR give preferences to shorter hops irrespective of replicas, moreover ABL uses bandwidth, which
is used by the replication algorithm too. Hence the replica hit % of ABL is good compared to ABR.
The 95% confidence interval for samples are shown as follows

No of Data items

10 20 30 40 50

ABL | 45.17+3.34 | 50.9+4.9 | 41.8+4.15 | 40.9+4.52 | 40.9816.24

ABR | 32.46+£15.6 | 35.4+8.1 | 30.4%7.6 | 33.11%6.9 | 27.55+4.67

8.6.3 STATIC QUERY EXECUTION
We did the following set of experiments for evaluating replication with respect to the current
simulation system.

a) Query Execution time Vs Bandwidth shared & No of data items
b) Query Execution time Vs Number of data items for various queries
¢) Number of data items Vs Number of joins

a) Number of data items Vs Query Execution time:

We evaluated the query execution time with 3 UAVs for query plan shown in table 1.3 by increasing
the number of data items and bandwidth shared by them from the broker. The query execution time
increases with increase in number of data items, which is due to the join operation; hence the query
execution time for 750 records is less than 1000 records. Similarly, the query execution time increases
with reduction in bandwidth shared, this is due to the delay incurred by the move operation on
transferring the query results. The plotted results are as follows

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

77

1700 -

1600

1500 -

Query Execution time (milliseconds)

records

—--4-- 1000
Records

w0 -
1300 .
360 300 250 200 150 Bandwidth shared
(kbps)
The 95% confidence intervals for samples are as follows
Bandwidth shared
360 300 250
750 1384.8+72.8 | 1448.4+129.4 | 1558.4+49.2
1000 | 1509.8+102.7 1597+23.1 | 1686.6146.6
200 150
750 | 1579.4+147.5 | 1616.8173.5
1000 | 1702.2+92.3 1715.4459.1

b) Query Execution time Vs Number of data items for various queries

We evaluated the query execution time for all the query plans in section (E) by varying the
number of data items. At each step, we increase the number of records in the network by capturing
more data. The number of records in the network is increased from 500 to 1000 records and various
queries are executed. The query execution time is found and the results of the above experiment are

plotted as shown below

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

78

Query Execution time vs. No. of records
2500 W Query 0
2000 mQuery 1
E mQuery 2
.E 1500 W Query 3
E M Query 4
= 1000
a Query 5
1]
i 500 EQuery 6
Query 7
0
500 records 750 records 1000 records
Total no. of records in the network

The query execution time increases as the number of records in the network increases. This is because
the time taken to join tables, combine tables and transfer data between UAV’s increases with the
increase in total number of records. We compare the execution times for various benchmark queries
and compare them in the above graph. The increase due to number of records is not large because only
the meta-data is transferred between UAV’s.

¢) Number of data items Vs Number of joins

We evaluated the query execution time for various numbers of joins in the query; the following
query plans in Section E have the corresponding number of joins
Query 5€ Single Join
Query 0€Double Join
Query 8<Triple Join
We vary the number of records for each set and the results are plotted as follows

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

79

3
g 2000
8 1900
& 1800 7 [single Join
= 1700
E 1600 H Double loin
E 1500 W Triple Join
= 1400 -
c 4
£ 1300
1200 -
@ 1100 -
3 1000 -
= 900 -
2 B00 |
=
¢ 700 -

600

500 750 1000 Number of Data

The query execution time increases will increase with respect to increase in number of joins in the
qguery plan. Moreover, the increase in data item too increases the query execution time, due to more
processing time while joining the data items.

The 95% confidence interval for the above plotted results is as follows

Bandwidth shared

Single Double Triple

500 | 842.4+98.14 1263+73.3 | 1616.6191.5

750 935.6+51.9 | 1321.2+103.7 | 1735.2+70.83

1000 | 999.6+40.3 1479.4+72.4 | 1988.2+65.17

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

80

9. SOFTWARE DEVELOPMENT

Two pieces of software have been developed for this project:

A query plan generator described in Section 3. This includes the software for generating connectivity
configurations. Experimental results are in Section 3.6.

A simulator described in Section 5. Experimental results of the simulator are also described in Section 5.

All the software developed for this project will be delivered to AFRL on a DVD or CD Rom. They can also
be downloaded by right-clicking and downloading on the following (hidden) links:

http://itlab.uta.edu/downloads/QPGSETUP.zip
http://itlab.uta.edu/downloads/SIMULATORSETUP.zip
http://itlab.uta.edu/downloads/setup-instructions(qpg).zip

http://itlab.uta.edu/downloads/setup-instructions(simulator).zip

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

81

10. RESULTS AND DISCUSSIONS

Collaborative airborne, ground/surface based, manned and unmanned missions are expected to become
more prevalent in the future.

We have provided an insight into some of the fundamental issues with regard to scalable, fault tolerant
repositories. We have provided a use case analysis that allows the focusing of technological needs in a
complex tactical scenario.

We have provided insight into what the Metadata management should look like, optimized Query plan
generation algorithms and heuristics to this scenario which differs from traditional distributed query
processing, and approaches to Replication management. We have provided simulations of the above
that allow easier visualization and understanding of some of these complex issues. The software
developed has also been provided.

This research has enabled an understanding of the issues, and has raised a number of other fruitful
research needs:

Collaboration of teams of manned and unmanned systems will require a different type of command and
control system. This next generation C2 system must work at a number of different levels. It will need to
provide planning, strategic control, and tactical control. It will need to understand that systems and
platforms may embark on missions, without access to communications, and then rejoin.

The data repositories will be distributed, highly mobile, and dynamic. The ISR requirements dictate that
massive amounts of data will need to be collected and analyzed autonomously in tactical timeframes

In summary, this project has established the foundation for this problem by identifying the sub
problems, issues in each sub problem, and has investigated how they all come together towards the
solution of the initial problem. This effort is by no means complete. In each section, we have articulated
the need for extending proposed solutions to reach a practically useful approach/solution.

Furthermore, we have not addressed all the problems identified in the proposed architecture shown in
Figure 1. There are a number of important problems that need to be addressed to obtain a complete
solution. We will be happy to explore opportunities with AFRL or other agencies to continue this work.

In this project, we have implemented proof-principle systems to show the effectiveness of the proposed
approaches. The simulator has been extended to incorporate features specific to this scenario and
analysis has been performed. The next logical step is to create a prototype by bringing all the
components together and then move towards a testbed. The team has been chosen from the outset
keeping the long term goals in mind and team is well-positioned for additional work on this project.

11. CONCLUSIONS

The project involved the development of a middleware for fault-tolerant computing in a
distributed network of UAVs, each carrying data repositories. Each node or UAV in the network

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

82

is host to metadata, sourced at the node as well as replicated. The developed middleware
serves the main purpose of responding to queries. We have developed methods for handling
use case scenarios, metadata management, replicated data management, query plan
generation algorithms, and network management.

Currently, a static plan is generated for each query and the query is processed sequentially by
performing a sequence of operations at different nodes. This can be further improved by
generating a dynamic plan at each node where the query is processed to accommodate
intermittent connectivity among nodes. Furthermore, a query plan can be executed in parallel
(using either static or dynamic plans) to improve response time. This can be extended to multi-
copy and partial replica again to accommodate intermittent connectivity. Above-mentioned
extensions will add complexity to both Meta data management and query processing.

In conclusion, there are a number of important problems that need to be addressed to obtain a
complete solution. The team will be happy to explore opportunities with AFRL or other agencies to
continue this work.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

83

12.

REFERENCES

10.

11.

12.

13.

14.

15.
16.

Air Land Sea Bulletin, Close Air Support, Issue 2010-2, May 2010.

Bauer, Major Zdenek (Czech Air Force), Combat Controllers and UAVs Together, USAF
Air University, April 2007.

Defense Science Board Task Force, Integrated Fire Support in the Battlespace, Office of
the Under Secretary of Defense for Acquisition, Technology, and Logistics, October
2004.

Drury, Jill L. and Darling, Erika, A “Thin-Slicing” Approach to Understanding Cognitive
Challenges in Complex Command and Control, The MITRE Corporation, 3 January 2007.
Gruetzmacher, Commander Jeffrey K. (USN), Holtery, Lieutenant Colonel Michelle
Joerin (USA), Putney, Major Jonathan R. (USAF), Fratricide: The Ultimate Cost of Joint
interoperability Failure, Joint Forces Staff College, 11 June 2002.

Hume, Colonel David B. (USAF), Command, Control and Integration of Weaponized
Unmanned Aircraft into the Air-to-Ground System, USAF Air War College, 23 February
2007.

Joint Chiefs of Staff, Doctrine for Joint Fire Support, Joint Publication 3-09,
Washington, DC, 30 June 2010.

Joint Chiefs of Staff, Joint Tactics, Techniques, and Procedures for Close Air Support
(CAS), Joint Publication 3-09.3, Washington, DC, 8 July 2009.

Marine Corps, Close Air Support, Marine Corps Warfighting Publication (MCWP) 3-
23.1, July 1998.

Martin, Captain D. E., The Future of Marine Corps Close Air Support: The Urban
Environment, USMC Command and Staff College, 7 February 2006.

Pirnie B., Vick A., Grissom A., Mueller K., and Orletsky, D., Beyond Close Air Support:
Forging a new air-ground partnership, RAND Corporation, 25 April 2005.

Simpson B., Rouff C., Roberts J., Edwards G., An Autonomic system for Close Air
Support, 2009 IEEE Conference and Workshops on Engineering of Autonomic and
Autonomous Systems.

Taliaferro, Major Jeffrey B., Coordinate-guided Weapons in Close Air Support: An
Evaluation of Risk, USAF Air University, June 2003.

Unterreiner, Commander Ronald J. (USN), Brelsford, Major Jeffrey A., Findlay, Major
Richard J. (USMC), Hunnell, Major John F., Wagner, Major Michael F., Close Air Support
(CAS) in 2025, USAF Air University, August 1996.

US Army, Attack Helicopter Operations, Field Manual 1-112, 2 April 1997.

US Army, Army Unmanned Aircraft, System Operations, FMI 3-04.155, April 2006.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

84

The following paper has been published by the team of investigators

1. Hemanth Meka, Lekshmi Manian Chidambaram, Sanjay Madria, Mohan Kumar,
Mark Linderman and Sharma Chakravarthy, ROMAN: Routing and Opportunistic

Management of Airborne Networks, , to appear in IEEE proceedings of
International Symposium on Collaborative Technologies and Systems (CTS
2011), Philadelphia, USA.

2. M. Kumar, S. Chakravarthy, S. Madria, M. Linderman and W. Naqvi,
Middleware for Supporting Content Sharing in Dynamic Networks, The
2011 Military Communications Conference (Unclassified Papers), Baltimore,

November 2011.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

85

List of Acronyms

AAA — Anti Aircraft Artillery

ACK — Acknowledgement

AWAC — Airborne Warning and Control System
BER — Bit Error Rate

CNF - Conjunctive Normal Form

DMZ - De Militarized Zone

FLOT - Forward Line Own Troops
ID - Identifier

JAOC - Joint Air Operations Center
JTAC - Joint Terminal Attack Controller
LS — Link Stability

MIO - Metadata Information Object
NAK — Negative Acknowledgement

NM — Nautical Mile

RSS — Received Signal Strength

SAM - Surface to Air Missile

SEAD - Suppression of Enemy Air Defenses (SEAD)
SOA - Service Oriented Architecture
SPJ — Select-Project-Join

SQL - Structured Query Language

TCP — Transport Control protocol

UAV - Unmanned Aerial Vehicles

UDP — User Datagram protocol

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

86

